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Abstract—Deep learning (DL) models are inherently vulnerable
to adversarial examples – maliciously crafted inputs to trigger
target DL models to misbehave – which significantly hinders
the application of DL in security-sensitive domains. Intensive
research on adversarial learning has led to an arms race between
adversaries and defenders. Such plethora of emerging attacks and
defenses raise many questions: Which attacks are more evasive,
preprocessing-proof, or transferable? Which defenses are more
effective, utility-preserving, or general? Are ensembles of multiple
defenses more robust than individuals? Yet, due to the lack of
platforms for comprehensive evaluation on adversarial attacks
and defenses, these critical questions remain largely unsolved.

In this paper, we present the design, implementation, and
evaluation of DEEPSEC, a uniform platform that aims to bridge
this gap. In its current implementation, DEEPSEC incorporates
16 state-of-the-art attacks with 10 attack utility metrics, and 13
state-of-the-art defenses with 5 defensive utility metrics. To our
best knowledge, DEEPSEC is the first platform that enables re-
searchers and practitioners to (i) measure the vulnerability of DL
models, (ii) evaluate the effectiveness of various attacks/defenses,
and (iii) conduct comparative studies on attacks/defenses in a
comprehensive and informative manner. Leveraging DEEPSEC,
we systematically evaluate the existing adversarial attack and de-
fense methods, and draw a set of key findings, which demonstrate
DEEPSEC’s rich functionality, such as (1) the trade-off between
misclassification and imperceptibility is empirically confirmed;
(2) most defenses that claim to be universally applicable can only
defend against limited types of attacks under restricted settings;
(3) it is not necessary that adversarial examples with higher per-
turbation magnitude are easier to be detected; (4) the ensemble of
multiple defenses cannot improve the overall defense capability,
but can improve the lower bound of the defense effectiveness
of individuals. Extensive analysis on DEEPSEC demonstrates its
capabilities and advantages as a benchmark platform which can
benefit future adversarial learning research.

I. INTRODUCTION

Recent advances in deep learning (DL) techniques have led
to breakthroughs in a number of long-standing artificial intelli-
gence tasks (e.g., image classification, speech recognition, and
even playing Go [1]). Unfortunately, it has been demonstrated
that existing DL models are inherently vulnerable to adver-
sarial examples [2], which are maliciously crafted inputs to
trigger target DL models to misbehave. Due to the increasing
use of DL models in security-sensitive domains (e.g., self-
driving cars [3], face recognition [4], malware detection [5],
medical diagnostics [6]), the phenomena of adversarial ex-
amples has attracted intensive studies from both academia
and industry, with a variety of adversarial attack and defense
methods being proposed [2], [7], [8]. At a high level, the
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attacks attempt to force the target DL models to misclassify
using adversarial examples, which are often generated by
slightly perturbing legitimate inputs; meanwhile, the defenses
attempt to strengthen the resilience of DL models against
such adversarial examples, while maximally preserving the
performance of DL models on legitimate instances.

The security researchers and practitioners are now facing
a myriad of adversarial attacks and defenses; yet, there is
still a lack of quantitative understanding about the strengths
and limitations of these methods due to incomplete or biased
evaluation. First, they are often assessed using simple metrics.
For example, misclassification rate is used as the primary
metric to evaluate attack methods. However, as shown in our
studies, misclassification rate alone is often insufficient to
characterize an attack method. Second, they are only evaluated
against a small set of attacks/defenses, e.g., many defenses
are evaluated using a few “strong” attacks. However, as found
in our studies, defenses robust against “stronger” attacks are
not necessarily immune to “weaker” ones. Third, the constant
arms race between adversarial attacks and defenses invalidates
conventional wisdom quickly. For instance, the gradient ob-
fuscation strategy adopted by many defenses is later shown
to be ineffective [9]. The compound effects of these factors
often result in contradictory and puzzling conclusions about
the same attack/defense methods. As an example, defensive
distillation (DD) [10] was evaluated against JSMA [11] and
claimed to significantly improve the robustness of DL models.
Nevertheless, it was soon found to only provide marginal
robustness improvement against new attacks (e.g., C&W [12]).
Moreover, it was later shown that models trained with DD may
perform ever worse than undefended models [13].

We argue that to further advance the research on adversarial
examples, it is critical to provide an analysis platform to sup-
port comprehensive and informative evaluation of adversarial
attacks and defenses. We envision that a set of desiderata are
required for such a platform to be practically useful:

• Uniform – It should support to compare different at-
tack/defense methods under the same setting;

• Comprehensive – It should include most representative
attack/defense methods;

• Informative – It should include a rich set of metrics to
assess different attack/defense methods;

• Extensible – It should be easily extended to incorporate
new attack/defense methods.

Unfortunately, none of the existing work (e.g., Clever-
hans [14]) meets all the requirements (details in Section VI).
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To bridge this gap, we present DEEPSEC, a first-of-its-kind
platform for security analysis of DL models, that satisfies all
the aforementioned desiderata. In its current implementation,
it incorporates 16 state-of-the-art adversarial attacks with 10
attack utility metrics and 13 representative defenses with 5
defense utility metrics. DEEPSEC enables security researchers
and practitioners to (i) assess the vulnerabilities of given DL
models to various attacks, (ii) evaluate the effectiveness of
various defenses, and (iii) conduct comparative studies on
different attacks/defenses in a comprehensive and informative
manner. To summarize, we make the following contributions.

1) We present DEEPSEC, the first platform designed specif-
ically to serve as an evaluation platform for adversarial
attacks/defenses. Two key features differentiate DEEPSEC
from the state-of-the-art adversarial learning libraries: a)
to our best knowledge, DEEPSEC includes the largest
collection of attack/defense methods (16 attacks and 13
defenses) thus far (e.g., Cleverhans [14] only provides 9
attacks and 1 defenses); b) it treats the evaluation metrics
as first-class citizens, thereby supporting the evaluation of
attacks/defenses in a uniform and informative manner.

2) Using DEEPSEC, we perform thus far the largest-scale
empirical study on adversarial attacks/defenses under
different metrics, among which 10 for attack and 5
for defense evaluation are proposed within the paper in
addition to the existing ones. Moreover, we perform the
largest-scale cross evaluation between different attack and
defense methods (16 × 13) to understand their relative
strengths and limitations.

3) Through this systematic study, we obtain a set of inter-
esting and insightful findings that may advance the field
of adversarial learning: a) the trade-off between misclas-
sification and imperceptibility performance of adversarial
examples is experimentally confirmed; b) most defenses
that claim to be universally applicable are only effective
for a very limited number of attacks or partially effective
for attacks under restricted settings; c) the ensemble of
multiple defenses cannot improve the overall defense ca-
pability, but can improve the lower bound of the defense
effectiveness of individuals.

Acronyms and Notations. For convenient reference, we
summarize the acronyms and notations in Tables I and II.

II. ATTACKS & DEFENSES

In this paper, we consider the non-adaptive and white-box
attack scenarios, where the adversary has full knowledge of
the target DL model but is not aware of defenses that might
be deployed. Since most white-box or non-adaptive attacks
can be applied to black-box attacks based on transferability
or adjustments to specific defenses, considering them would
provide general understanding of current attack scenarios
[33]–[35]. Further, we focus on classification tasks.

In this section, we summarize the state-of-the-art attack and
defense methods and present a rich set of metrics to assess the
utility of attack/defense methods.

TABLE I
ABBREVIATIONS AND ACRONYMS

Te
rm

s AE Adversarial Example
TA Targeted Attack
UA Un-targeted Attack

A
tt

ac
ks

U
n-

ta
rg

et
ed

A
tta

ck
s FGSM Fast Gradient Sign Method [15]

R+FGSM Random perturbation with FGSM [16]
BIM Basic Iterative Method [17]
PGD Projected L∞ Gradient Descent attack [18]

U-MI-FGSM Un-targeted Momentum Iterative FGSM [19]
DF DeepFool [20]

UAP Universal Adversarial Perturbation attack [21]
OM OptMargin [22]

Ta
rg

et
ed

A
tta

ck
s LLC Least Likely Class attack [17]

R+LLC Random perturbation with LLC [16]
ILLC Iterative LLC attack [17]

T-MI-FGSM Targeted Momentum Iterative FGSM [19]
BLB Box-constrained L-BFGS attack [2]

JSMA Jacobian-based Saliency Map Attack [11]
CW Carlini and Wagner’s attack [12]
EAD Elastic-net Attacks to DNNs [23]

D
ef

en
se

s
C

om
pl

et
e

D
ef

en
se

s

NAT Naive Adversarial Training [24]
EAT Ensemble Adversarial Training [16]
PAT PGD-based Adversarial Training [18]
DD Defensive Distillation [10]
IGR Input Gradient Regularization [13]
EIT Ensemble Input Transformation [25]
RT Random Transformations based defense [26]
PD PixelDefense [27]
TE Thermometer Encoding defense [28]
RC Region-based Classification [29]

D
et

ec
tio

n LID Local Intrinsic Dimensionality
based detector [30]

FS Feature Squeezing detector [31]
MagNet MagNet detector [32]

U
til

ity
M

et
ri

cs
A

tta
ck

s

MR Misclassification Ratio
ACAC Average Confidence of Adversarial Class
ACTC Average Confidence of True Class
ALDp Average Lp Distortion
ASS Average Structural Similarity
PSD Perturbation Sensitivity Distance
NTE Noise Tolerance Estimation
RGB Robustness to Gaussian Blur
RIC Robustness to Image Compression
CC Computation Cost

D
ef

en
se

s CAV Classification Accuracy Variance
CRR/CSR Classification Rectify/Sacrifice Ratio

CCV Classification Confidence Variance
COS Classification Output Stability

A. Adversarial Attack Advances

In general, existing attacks can be classified along multiple
different dimensions [8]. In this subsection, we classify attacks
along two dimensions: adversarial specificity (i.e., UA and
TA) and attack frequency (i.e., non-iterative attack and
iterative attack). Specifically, UAs aim to generate AEs that
can be misclassified into any class which is different from
the ground truth class, while TAs aim to generate AEs to be
misclassified into a specific target class. For attack frequency,
non-iterative attacks take only one single step to generate
AEs, while iterative attacks take multiple iterative updates.
In fact, those two categorizations are closely integrated, but
we describe them separately for clarity.

1) Non-iterative UAs: In [15], Goodfellow et al. proposed
the first and fastest non-iterative UA, called Fast Gradient
Sign Method (FGSM). By linearizing the loss function, FGSM
perturbs an image by maximizing the loss subject to a L∞
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TABLE II
NOTATIONS USED IN THIS PAPER

Notations Description

�X = {X1, · · · , XN} �X is the testing set with N
original examples, where Xi ∈ Rm.

�Y = {y1, · · · , yN} �Y is the corresponding ground-truth
label set of �X, where yi = 1, · · · , k.

F : Rm→{1, · · · , k} F is a DL classifier on k classes,
where F (�X) = �y.

P : Rm→Rk
P is the softmax layer output of F,

where F(X) = argmax
j

P (X)j .

P (X)j
P (X)j represents the j-th probability

of P (X), where j ∈ {1, · · · , k}
θ θ is the parameter of F.

Xa ∈ Rm Xa is the adversarial example of X .
y∗ The specified target class for TAs.

J :Rm×{1· · ·k}→R+ J is the loss function of F.

constraint: Xa=X+ε·sign(∇XJ(X, ytrue)), where ε is the
hyper-parameter of L∞ constraint. Similarly, Tramèr et al. [16]
proposed a non-iterative UA, R+FGSM, which applies a small
random perturbation before linearizing the loss function.

2) Iterative UAs: Kurakin et al. [17] introduced an in-
tuitive extension of FGSM - Basic Iterative Method (BIM)
that iteratively takes multiple small steps while adjusting the
direction after each step: Xa

0 = X ; Xa
n+1 = Clipx,ε(X

a
n+

α · sign(∇XJ(Xa
n, y

true))), where Clipx,ε is used to restrict
the L∞ of perturbation. Following BIM, Madry et al. [18]
introduced a variation of BIM by applying the projected
gradient descent algorithm with random starts, named as
the PGD attack. Similarly, Dong et al. [19] integrated the
momentum techniques [36] into BIM for the purpose of
stabilizing the updating direction and escaping from poor
local maximum during iterations. We refer this UA as U-
MI-FGSM. DeepFool [20] was proposed to generate AEs by
searching for the closest distance from the source image to
the decision boundary of the target model. Further in [21],
Moosavi-Dezfooli et al. developed a Universal Adversarial
Perturbation (UAP) attack, in which an image-agnostic and
universal perturbation can be used to misclassify almost all
images sampled from the dataset. In [22], He et al. proposed
an attack, OptMargin (OM), to generate robust AEs that can
evade existing region-based classification defense.

3) Non-iterative TAs: The TA version of FGSM was intro-
duced in [17] to specify the least likely class yLL of an original
image X as the target class, where yLL=argmin

y
P (y|X). We

refer this non-iterative TA as the Least-Likely Class (LLC)
attack: Xa=X−ε·sign(∇XJ(X, yLL)). Similar to R+FGSM,
Tramèr et al. [16] introduced R+LLC, which also integrates
a small random step before linearizing the loss function.

4) Iterative TAs: The first adversarial attack discovered by
Szegedy et al. [2] is an iterative TA, which generates AEs
by a Box-constrained L-BFGS (BLB) algorithm. However,
BLB has several limitations, e.g., it is time-consuming and
impractical to linearly search for the optimal solution at large
scale. To facilitate the efficiency of iterative TAs, Kurakin et
al. [17] proposed a straightforward iterative version of LLC -
ILLC. Following the attacks in [19], momentum techniques
can also be generalized to ILLC, called targeted MI-FGSM (T-

MI-FGSM). Taking a different perceptive, Papernot et al. [11]
proposed the Jacobian-based Saliency Map Attack (JSMA).
Specifically, JSMA first computes the Jacobian matrix of a
given sample X , and then perturbs it by finding the input
features of X that make the most significant changes to
the output. Carlini and Wagner [12] introduced a set of
powerful attacks based on different norm measurements on the
magnitude of perturbation, termed as CW. In particular, CW
is formalized as an optimization problem to search for high-
confidence AEs with small magnitude of perturbation, and has
three variants: CW0, CW2 and CW∞, respectively. In [23],
Chen et al. argued that L1 has not been explored to generate
AEs. Therefore, their Elastic-net Attack to DNNs (EAD)
formulates the generation of AE as an elastic-net regularized
optimization problem and features L1-oriented AEs.

B. Utility Metrics of Attacks

From the view of economics, utility is a measure of whether
goods or services provide the features that users need [37]. For
adversaries who want to attack DL models, utility means to
what extent the adversarial attack can provide “successful”
AEs. Generally speaking, successful AEs should not only
can be misclassified by the model, but also be imperceptible
to humans, robust to transformations as well as resilient to
existing defenses depending on the adversarial goals.1

In this paper, we consider misclassification, imperception,
and robustness as utility requirements while taking the re-
silience as the security requirement. We will first define 10
utility metrics for adversarial attacks below.

1) Misclassification: Firstly, we summarize utility metrics
in terms of misclassification as follows.

Misclassification Ratio (MR). Misclassification is the most
important property for adversarial attacks. In the case of UAs,
MR is defined as the percentage of AEs that are successfully
misclassified into an arbitrary class except their ground truth
classes. For TAs, MR is defined as the percentage of AEs
misclassified into the target classes as specified before. More
specifically, MRUA = 1

N

∑N
i=1 count(F(X

a
i ) �= yi) and

MRTA= 1
N

∑N
i=1 count(F(X

a
i )=y∗i ).

Average Confidence of Adversarial Class (ACAC).
For AEs, ACAC is defined as the average prediction
confidence towards the incorrect class, i.e., ACAC =
1
n

∑n
i=1 P (Xa

i )F (Xa
i )

, where n (n≤N ) is the total number
of successful AEs.

Average Confidence of True Class (ACTC). By averaging
the prediction confidence of true classes for AEs, ACTC is
used to further evaluate to what extent the attacks escape from
the ground truth: ACTC = 1

n

∑n
i=1 P (Xa

i )yi
.

2) Imperceptibility: In essence, imperceptibility implies
that the adversarial example would still be correctly classified
by human vision, which ensures that the adversarial and benign

1In this paper, we distinguish between the robustness and resilience of AEs.
Specifically, robustness reflects the misclassification stability after preprocess-
ing by inevitable transformations in physical world, while resilience represents
the surveillance of AEs when being defended by well-designed defenses.
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examples convey the same semantic meaning. To evaluate the
imperceptibility of AEs, we detail the metrics as follows.

Average Lp Distortion (ALDp). Almost all existing at-
tacks adopt Lp norm distance (i.e., p=0, 1,∞) as distortion
metrics for evaluations. Specifically, L0 counts the number
of pixels changed after the perturbation; L2 computes the
Euclidean distance between original and perturbed examples;
L∞ measures the maximum change in all dimensions of AEs.
In short, we define ALDp as the average normalized Lp distor-
tion for all successful AEs, i.e., ALDp = 1

n

∑n
i=1

‖Xa
i −Xi‖p

‖Xi‖p
.

The smaller ALDp is, the more imperceptible the AEs are.
Average Structural Similarity (ASS). As one of the

commonly used metrics to quantify the similarity between
two images, SSIM [38] is considered to be more consistent
to human visual perception than Lp similarity. To evaluate
the imperceptibility of AEs, we define ASS as the average
SSIM similarity between all successful AEs and their original
examples, i.e., ASS = 1

n

∑n
i=1 SSIM(Xa

i , Xi). Intuitively,
the greater the ASS is, the more imperceptible the AEs are.

Perturbation Sensitivity Distance (PSD). Based on the
contrast masking theory [39], PSD was proposed in [40] to
evaluate human perception of perturbations, where PSD =
1
n

∑n
i=1

∑m
j=1 δi,jSen(R(xi,j)), where m is the total number

of pixels, δi,j denotes the j-th pixel of the i-th example,
R(xi,j) represents the surrounding square region of xi,j ,
and Sen(R(xi,j)) = 1/std(R(xi,j)) with std(R(xi,j)) the
standard deviation function. The smaller PSD is, the more
imperceptible AEs are.

3) Robustness: Normally, images in physical world are
inevitably preprocessed before feeding them into production
systems (e.g., online image classification systems), which may
lead to declines in MR for AEs. Thus, it is essential to evaluate
the robustness of AEs under various realistic conditions.

Noise Tolerance Estimation (NTE). In [40], the robustness
of AEs is estimated by noise tolerance, which reflects the
amount of noises that AEs can tolerate while keeping the
misclassified class unchanged. Specifically, NTE calculates
the gap between the probability of misclassified class and
the max probability of all other classes, i.e., NTE =
1
n

∑n
i=1[P (Xa

i )F (Xa
i )
−max{P (Xa

i )j}], where j∈{1,· · · ,k}
and j �=F (Xa

i ). The higher NTE is, the more robust AEs are.
On the other hand, due to the uncertainty of what transfor-

mations may be used, we thus sample two most widely and
possibly used image preprocessing methods, Gaussian blur
and Image compression, to evaluate the robustness of AEs.

Robustness to Gaussian Blur (RGB). Gaussian blur is
widely used as a preprocessing stage in computer vision
algorithms to reduce noises in images. Normally, a robust
AE should maintain its misclassification effect after Gaussian
blur. That is, RGBUA=

count(F(GB(Xa
i ))�=yi)

count(F(Xa
i )�=yi)

and RGBTA=
count(F(GB(Xa

i ))=y
∗
i )

count(F(Xa
i )=y

∗
i )

, where GB denotes the Gaussian blur
function. The higher RGB is, the more robust AEs are.

Robustness to Image Compression (RIC). Simi-
lar to RGB, RIC can be formulated as: RICUA =
count(F(IC(Xa

i )) �=yi)
count(F(Xa

i ) �=yi)
and RICTA =

count(F(IC(Xa
i ))=y∗

i )
count(F(Xa

i )=y∗
i )

,

where IC denotes the specific image compression function.
Also, the higher RIC is, the more robust AEs are.

4) Computation Cost: We define the Computation Cost
(CC) as the runtime for attackers to generate an AE on
average, and therefore evaluate the attack cost.

C. Defense Advances

In general, existing defense techniques can be classified into
5 categories. We discuss each category as follows.

1) Adversarial Training: Adversarial training has been pro-
posed since the discovery of AEs in [2], with the hope that it
can learn robust models via augmenting the training set with
newly generated AEs. However, adversarial training with AEs
generated by BLB in [2] suffers from high computation cost,
which is impractical for large-scale training tasks.

To scale adversarial training to large-scale datasets, Kurakin
et al. [24] presented a computationally efficient adversar-
ial training with AEs generated by LLC, which we refer
to as Naive Adversarial Training (NAT). Later, Tramèr et
al. [16] proposed the Ensemble Adversarial Training (EAT)
that augments training data with AEs generated by R+FGSM
on other pre-trained models instead of the original model.
Another variant of adversarial training, referred to as PGD-
based Adversarial Training (PAT), was presented in [18] via
retraining the model with AEs generated by PGD iteratively.

2) Gradient Masking/Regularization: A natural idea to
defend against adversarial attacks is to reduce the sensitivity of
models to AEs and hide the gradients [41], which is referred
to as the gradient masking/regularization method.

In [10], Papernot et al. introduced the Defensive Distillation
(DD) defense to reduce or smooth the amplitude of network
gradients and make the defended model less sensitive w.r.t
perturbations in AEs. However in [13], Ross and Doshi-Velez
claimed that DD-enhanced models perform no better than un-
defended models in general. Aiming at improving robustness
of models, they introduced the Input Gradient Regularization
(IGR), which directly optimizes the model for more smooth
input gradients w.r.t its predictions during training.

3) Input Transformation: As defenses discussed above ei-
ther depend on generated AEs or require modifications to
the original model, it is particularly important to devise
attack/model-agnostic defenses against adversarial attacks. Re-
searchers have attempted to remove the adversarial perturba-
tions of the testing inputs before feeding them into the original
model, which we refer to as input transformation defenses.

Using five different image transformation techniques, Guo
et al. [25] showed that training the models on corresponding
transformed images can effectively defend against existing
attacks, which we refer to as Ensemble Input Transformation
(EIT). Another similar work is [26], where Xie et al. intro-
duced a Random Transformations-based (RT) defense. In RT,
the testing images first go through two additional randomiza-
tion layers, and then the transformed images are passed to the
original model. In [27], Song et al. proposed PixelDefense
(PD) to purify adversarial perturbations. More specifically,
PD makes use of the PixelCNN [42], a generative model, to
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purify the AEs and then passes the purified examples to the
original model. Buckman et al. [28] proposed the Thermometer
Encoding (TE) method to retrain the classification model with
discretized inputs using thermometer encoding, and discretize
the testing inputs before passing them to the retrained model.

4) Region-based Classification: Region-based Classifica-
tion (RC) defense [29] takes the majority prediction on
examples that are uniformly sampled from a hypercube around
the AE, since they found that the hypercube around an AE
greatly intersects with its true class region of the AE.

5) Detection-only Defenses: Given the difficulty in classi-
fying AEs correctly, a number of detection-only defenses have
been proposed to merely detect AEs and reject them. In this
part, we introduce several latest and representative works and
refer interested readers to [8], [43] for more others.

Ma et al. [30] proposed a Local Intrinsic Dimensional-
ity based detector (LID) to discriminate AEs from normal
examples due to the observation that the LID of AEs is
significantly higher than that of normal examples. In [31],
Xu et al. proposed the Feature Squeezing (FS) method to
detect AEs via comparing the prediction difference between
the original input and corresponding squeezed input. In [32],
Meng and Chen proposed the MagNet defense framework,
which is a combination defense of complete defense (i.e., the
reformer) and detection-only defense (i.e., the detector).

D. Utility Metrics of Defenses

In general, defenses can be evaluated from two perspectives:
utility preservation and resistance to attacks. Particularly, the
utility preservation captures how the defense-enhanced model
preserves the functionality of the original model, while the
resistance reflects the effectiveness of defense-enhanced model
against adversarial attacks. For the utility of defense, it does
not make sense for detection-only defenses since they only
detect AEs and reject them. Thus, it is important to note that
we only evaluate the utility performance of complete defenses.

Suppose we attain the defense-enhanced model FD of F,
while PD denotes the corresponding softmax layer output of
FD. Next, we detail 5 utility metrics of defenses.

Classification Accuracy Variance (CAV). The most impor-
tant metric used to evaluate the performance of a DL model is
accuracy. Therefore, a defense-enhanced model should main-
tain the classification accuracy on normal testing examples as
much as possible. In order to evaluate the impact of defenses
on accuracy, we define CAV = Acc(FD, T )−Acc(F, T ),
where Acc(F, T ) denotes model F’s accuracy on dataset T .

Classification Rectify/Sacrifice Ratio (CRR/CSR). To
assess how defenses influence the predictions of models on the
testing set, we detail the difference of predictions before and
after applying defenses. We define the CRR as the percentage
of testing examples that are misclassified by F previously but
correctly classified by FD. Inversely, CSR is the percentage
of testing examples that are correctly classified by F but
misclassified by FD. That is, CRR= 1

N

∑N
i=1 count(F(Xi) �=

yi&FD(Xi) = yi) and CSR = 1
N

∑N
i=1 count(F(Xi) =

yi&FD(Xi) �=yi). In fact, CAV =CRR−CSR.
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Fig. 1. The System Overview of DEEPSEC

Classification Confidence Variance (CCV). Although
defense-enhanced models might not affect the accuracy per-
formance, the prediction confidence of correctly classified ex-
amples may significantly decrease. To measure the confidence
variance induced by defense-enhanced models, we formulate
CCV = 1

n

∑n
i=1 |P (Xi)yi −PD(Xi)yi |, where n < N is the

number of examples correctly classified by both F and FD.
Classification Output Stability (COS). To measure the

classification output stability between the original model and
the defense-enhanced model, we use JS divergence [44] to
measure the similarity of their output probability. We average
the JS divergence between the output of original and defense-
enhanced model on all correctly classified testing examples,
i.e., COS = 1

n

∑n
i=1 JSD(P (Xi)‖PD(Xi)), where n<N is

the number of examples classified by both F and FD correctly;
JSD is the function of JS divergence.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. System Design

We present the system overview of DEEPSEC in Fig. 1.
Basically, it consists of five parts:

1) Attack Module (AM). The main function of AM is to
exploit vulnerabilities of DL models and attack them via
crafting AEs. In this module, we implement 16 state-of-
the-art adversarial attacks, including 8 UAs and 8 TAs.

2) Defense Module (DM). The main function of DM is to
defend DL models and increase their resistance against
adversarial attacks. In this module, we implement 13
latest and representative defense methods, which cover
all categories of existing defenses.

3) Attack Utility Evaluation (AUE). In this module, we
implement 10 utility metrics of adversarial attacks (as
detailed in Section II-B). With AUE, users can evaluate
to what extent the generated AEs satisfy the essential
utility requirements of adversarial attacks.

4) Defense Utility Evaluation (DUE). Similar to AUE,
DUE is mainly used for evaluating the utility of the state-
of-the-art defenses in terms of 5 utility metrics, as defined
in Section II-D. With this module, users can measure
to what extent a defense-enhanced model preserves the
fundamental functionality of the original model after
applying all the defenses in DM.

5) Security Evaluation (SE). Leveraging both AM and DM
modules, SE is used to evaluate the vulnerability and
resilience of defense-enhanced models against existing at-
tacks. More importantly, users can determine whether the
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defense-enhanced models that are planned to deploy/share
are resistant to current adversarial attacks.

To the best of our knowledge, DEEPSEC is the first im-
plemented uniform evaluating and securing system for DL
models, which comprehensively and systematically integrates
the state-of-the-art adversarial attacks, defenses and relative
utility metrics of them. The significance of DEEPSEC to
research and application lies in the following aspects.
• First, before sharing or deploying the pre-trained DL mod-

els publicly, DEEPSEC enables model owners to conveniently
and freely choose any existing defenses to secure their models.
Model owners can also employ evaluation modules (i.e.,
DUE and SE) of DEEPSEC to examine whether the defense-
enhanced models satisfy their utility/security requirements.
• Second, DEEPSEC is a uniform platform for systemat-

ically evaluating different adversarial attacks and defenses.
Previously, due to the lack of such a uniform platform, existing
attacks and defenses are often implemented and evaluated on
different experimental settings (e.g., DL models, parameter
settings, evaluation metrics, testing environment, etc.). Con-
sequently, those implementation and evaluation differences
make researchers confused about the actual utility and secu-
rity performance of attacks/defenses. Some researchers even
draw contradictory conclusions for the same problems. For
instance, the effectiveness of DD against adversarial attacks
obtains different observations in different work [10], [12], [13].
However, as a uniform evaluation platform, DEEPSEC can
reduce the evaluation bias as much as possible and facilitate
fair comparisons among different attacks/defenses. Therefore,
DEEPSEC allows model owners to compare the performance
of all possible defense-enhanced models that adopt different
defenses and thus make the best decision.
• Third, DEEPSEC allows researchers to evaluate the utility

and security performance of newly proposed adversarial at-
tacks by attacking state-of-the-art defenses. Also, DEEPSEC
enables researchers to compare the performance of newly
proposed defenses with existing defenses as well as to examine
their defenses’ resistance against existing adversarial attacks.
Therefore, DEEPSEC is helpful for both attack and defense
research to conveniently and fairly apply existing approaches
to comprehensively understand the actual performance.

In addition to providing a uniform evaluation system,
DEEPSEC takes a fully modular implementation, which makes
it easily extendable. First, algorithms in DEEPSEC are im-
plemented using PyTorch [45], which has been widely used
in the DL research community. Second, all modules inside
DEEPSEC are independent of each other, which means that
each module can work individually. Additionally, as shown in
Fig. 1, multiple modules can also work together to perform
rich evaluation. Third, all algorithms or evaluation tests within
each module are also independent, which means that they can
be implemented, measured and employed independently.

B. System Implementation

In AM, we implement 16 adversarial attacks as we sum-
marized in Section II-A. Specifically, we cover all cate-

gories of existing attacks that include 8 UAs: FGSM [15],
R+FGSM [16], BIM [17], PGD [18], U-MI-FGSM [19],
DF [20], UAP [21], OM [22]; and 8 TAs: LLC [17],
R+LLC [16], ILLC [17], T-MI-FGSM [19], BLB [2],
JSMA [11], CW2 [10], EAD [23].

In DM, we implement 13 defense algorithms, which also
cover all the categories of state-of-the-art defense algorithms
summarized in Section II-C. Specifically, the implemented
defense algorithms include 3 adversarial training defenses:
NAT [24], EAT [16] and PAT [18]; 2 gradient masking
defenses: DD [10] and IGR [13]; 4 input transformation
based defenses: EIT [25], RT [26], PD [27] and TE [28];
one region-based classification defense RC [29]; as well as
3 detection-only defenses: LID [30], FS [31] and the detector
of MagNet [32].

Note that for both adversarial attacks and defenses, our
implementations take representativeness, scalability and prac-
ticality into consideration, which leads us to implement the
latest, scalable and practical adversarial attacks and defenses.

In addition, for AUE and DUE, we implement 10 attack
utility metrics (introduced in Section II-B) and 5 defense utility
metrics (introduced in Section II-D), respectively.

IV. EVALUATIONS

In this section, we first evaluate the utility performance of
all adversarial attacks and various defense algorithms. Then,
we examine the security performance of all defenses against
various adversarial attacks. Note that all experiments were
conducted on a PC equipped with 2 Intel Xeon 2.2GHz CPU,
256GB system memory and one NVIDIA GTX 1080 GPU.

A. Evaluation of Attacks

1) Experimental Setup: We employ two popular benchmark
datasets: MNIST [46] and CIFAR-10 [47], which have been
widely used in image classification tasks. To be compatible
with existing work on adversarial attacks or defenses, we train
a 7-layer CNN [10] and a ResNet-20 model [48] for MNIST
and CIFAR-10 (more details are shown in Appendix VIII-A),
respectively. We achieve 99.27% testing accuracy on MNIST
and 85.95% testing accuracy on CIFAR-10.

We present our evaluation methodology as follows. At
first, we randomly sample 1000 examples that are correctly
predicted by the corresponding model from each dataset’s
testing set. Then, for each attack in AM, we generate 1000
AEs on the sampled examples. Finally, leveraging AUE, we
examine the utility performance of all attacks. Particularly, the
target class for each TA is chosen randomly and uniformly
among the labels except the ground truth. 2

The criteria for parameter setting in evaluating attacks are:
(i) the value of common parameters of different attacks are
kept the same for unbiased comparisons, e.g., all L∞ attacks
share the same restriction ε. (ii) all the other parameters
follow the same/similar setting in the original work for all

2We do not choose the target class for LLC, R+LLC and ILLC, since they
inherently take the least-likely class as the target class.
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attacks. The detailed parameter settings can be found in
Appendix IX-A.

2) Experimental Results: We only present the evaluation
results of CIFAR-10 in Table III, since the results for MNIST
are similar and we defer them to Appendix X.

Misclassification. Generally, most of existing attacks, in-
cluding both UAs and TAs, show strong attacking ability with
high MR. More specifically, it can be observed that iterative
attacks present noticeably higher MR than non-iterative at-
tacks. Furthermore, we find that all iterative attacks, including
iterative UAs and iterative TAs, have nearly 100% MR on
CIFAR-10. The reason is intuitive that iterative attacks run
multiple complicated iterations to find the optimal perturbation
for the target model, while non-iterative attacks only take one
step to compute the perturbation.

In spite of 100% MR, some adversarial attacks have low
ACAC, which indicates that AEs generated by those attacks
are low confident. We suggest that directly comparing the exact
ACAC among all kinds of attacks can be misleading since
they might have totally different parameters, e.g., it is unfair
to compare ACAC between ILLC (L∞ attack) and CW2 (L2

attack). On the other hand, via fine-tuning the parameters of
attacks, their performance can be significantly changed. For
instance, if the κ of CW2 is increased from 0 to 20, ACAC
of CW2 increases from 0.393 to 1.000 on CIFAR-10.

Basically, AEs with higher ACAC have lower ACTC, since
the sum of probability of each class is 100%. However, if
ACAC is lower than 100%, ACTC can be relatively high or
low. In that case, for AEs with similar ACAC, we suggest
such AEs with lower ACTC would show better resilience to
other models as their true classes are less likely to be correctly
classified by other models (e.g., defense-enhanced models or
other raw models). For instance, both FGSM (ε = 0.1) and
OM achieve around 0.75 ACAC on CIFAR-10, but the ACTC
of FGSM is 6× lower than that of OM. Hence, we conclude
that FGSM shows better resilience than OM, which will later
be empirically verified in following evaluations (see more in
Section IV-C and Section V-A, respectively).

Remark 1. In most cases, existing attacks show high attack
success rate (i.e., MR) in terms of misleading the target model.
In addition to MR, it is also important to evaluate the attacks
with other metrics. For instance, we observe that AEs with
low ACTC show better resilience to other models.

Imperceptibility. We quantify and analyze the impercepti-
bility of AEs in terms of ALDp, ASS and PSD.

In general, most existing attacks explore Lp norm to for-
mulate attack algorithms in their objective functions. From
Table III, we observe that attacks that use the same ALDp

metric in their attack objectives tend to perform better in that
distance measurement than in other distance measurements.
For instance, L∞ attacks, perform better in L∞ distortion,
but perform poorly in both L0 and L2 distortions.

On the other hand, via fine-tuning parameters, Lp distortions
of attacks can be easily increased for better misclassification
performance. For instance, when we increase κ from 0 to

20, all Lp distortions of CW2 significantly increase. Similar
observations are obtained when we increase ε for FGSM. The
above observations suggest that there exists an objective trade-
off between misclassification and imperceptibility. The trade-
off stems from the mathematical framework of adversarial
attacks, which are usually formulated as optimization problems
with two objectives: (i) to misclassify the adversarial sample
and (ii) to minimize the perceptual difference of adversarial
and benign samples. As these two objectives are not always
aligned, there exists a tension between misclassification and
imperceptibility, which has been empirically confirmed.

Compared with ALDp, existing attack techniques perform
better at preserving ASS. On CIFAR-10, most attacks achieve
nearly 100% similarity between original examples and cor-
responding AEs. This is because ASS is consistent with Lp

norms, and thus balanced Lp norms (i.e., none of L0, L2

and L∞ is extremely high) can result in high ASS. For
instance, AEs generated by CW2 and EAD show moderate
Lp distortions, which leads to nearly 100% similarity between
original examples and AEs.

According to the results, PSD is more sensitive than ASS.
Also, we observe that the PSDs of L2 attacks are much
lower than those of other attacks (i.e., L∞ or L0 attacks).
This implies that AEs generated by L2 attacks are more
visually imperceptible than those generated by other attacks
w.r.t PSD. One possible reason is that the formulation of
PSD is consistent with L2 distortion, and thus L2 attacks
outperform others in both L2 and PSD.

Remark 2. Among all imperceptibility metrics, PSD is the
most sensitive imperceptible metric to the perturbation of
AEs, while ASS is the least sensitive, which we suggest is
not suitable to quantify AEs. Also, the trade-off between
misclassification and imperceptibility is empirically confirmed.

Robustness. We examine the robustness of existing attacks
w.r.t three metrics (i.e., NTE, RGB, RIC). In our evaluation,
we use Guetzli [49], an open source compression algorithm
that creates high visual quality images. Specifically, the radius
of Gaussian blur is set to 0.5 for RGB and the compression
quality is set to 90% for RIC.

In general, the evaluation results of NTE, RGB and RIC
are positively correlated for the adversarial attack. As shown
in Table III, adversarial attacks with high NTE tend to perform
better in RGB and RIC in most cases. The underlying reason
could be that high NTE implies higher probability of the
misclassified class, and therefore it can tolerate more trans-
formations than AEs with smaller NTE. On the other hand,
the correlation of NTE, RGB and RIC is non-linear as they
measure the robustness of attacks from different perspectives.
For instance, we observe that the NTE of CW2 (κ = 20) is
extremely high while its RIC is quite low.

Generally, AEs with higher ACAC are shown to be more
robust in RGB and RIC. This is because ACAC can influence
NTE directly and thus further influence RGB and RIC since
these two metrics are consistent with NTE as discussed before.
Therefore, increasing the ACAC via fine-tuning parameters in
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TABLE III
UTILITY EVALUATION RESULTS OF ALL ADVERSARIAL ATTACKS ON CIFAR-10

D
at

as
et

s Attack Misclassification Imperceptibility Robustness
CCUA/

TA
Objec-

tive Attacks MR ACAC ACTC ALDp ASS PSD NTE RGB RIC
L0 L2 L∞

C
IF

A
R

-1
0

UAs

L∞
ε=0.1

FGSM ε=0.1 89.7% 0.743 0.033 0.993 5.423 0.100 0.710 276.991 0.568 0.942 0.932 0.0017
ε=0.2 89.8% 0.873 0.008 0.994 10.596 0.200 0.433 537.340 0.752 0.939 0.977 0.0016

R+FGSM 83.7% 0.846 0.018 0.520 3.871 0.100 0.812 142.111 0.733 0.962 0.968 0.0017
BIM 100.0% 1.000 0.000 0.775 2.003 0.100 0.940 79.507 1.000 1.000 0.998 0.0049
PGD 100.0% 1.000 0.000 0.979 3.682 0.100 0.827 165.721 1.000 1.000 1.000 0.0227

U-MI-FGSM 100.0% 1.000 0.000 0.919 3.816 0.100 0.817 171.691 1.000 1.000 1.000 0.0056
UAP 85.3% 0.723 0.038 1.000 5.335 0.100 0.717 275.353 0.527 0.904 0.907 -∗

L2
DF 100.0% 0.516 0.458 0.135 0.078 0.010 1.000 2.692 0.058 0.064 0.226 0.0113
OM 100.0% 0.750 0.182 0.274 0.192 0.022 0.999 5.485 0.541 0.929 0.908 20.4526

TAs

L∞
ε=0.1

LLC 13.4% 0.768 0.016 0.992 5.400 0.100 0.730 273.682 0.594 0.620 0.630 0.0009
R+LLC 31.5% 0.876 0.009 0.531 3.897 0.100 0.825 143.450 0.763 0.635 0.548 0.0006
ILLC 100.0% 1.000 0.000 0.764 1.829 0.100 0.946 73.204 0.909 1.000 0.500 0.0033

T-MI-FGSM 100.0% 1.000 0.000 0.937 4.063 0.100 0.799 187.717 1.000 1.000 0.993 0.0047
L0 JSMA 99.7% 0.508 0.164 0.022 4.304 0.879 0.832 32.445 0.238 0.321 0.224 2.6207

L2

BLB 100.0% 0.500 0.349 0.218 0.111 0.013 1.000 3.882 0.141 0.007 0.025 90.6852

CW2 κ=0 100.0% 0.393 0.348 0.230 0.112 0.013 1.000 3.986 0.032 0.009 0.023 3.0647
κ=20 100.0% 1.000 0.000 0.557 0.279 0.031 0.998 10.157 1.000 0.736 0.049 4.6315

EAD EN 100.0% 0.433 0.316 0.106 0.156 0.033 0.999 2.457 0.093 0.015 0.027 4.5115
L1 100.0% 0.377 0.352 0.041 0.185 0.057 0.999 1.642 0.014 0.014 0.030 4.7438

∗ Since UAP takes different settings and significantly longer time to generate the universal perturbation, here we do not consider the computation cost for it.

one attack can improve its robustness as well.
Compared to TAs, most UAs are shown to be more robust

to regular transformations. For instance, on CIFAR-10, most
UAs achieve over 90%, even 100% robustness in both RGB
and RIC. This implies that almost all AEs generated by
such attacks can maintain its capability of misclassification as
before. On the other hand, most TAs, especially BLB, JSMA,
CW and EAD, are shown to experience the worst robustness
in RGB and RIC. It suggests that regular transformations
are effective for mitigating such attacks. The root reason we
conjecture is that with specifying the target class, TAs are
more difficult to attack than UAs. Therefore, it is difficult for
TAs to obtain higher ACAC, which affects their robustness.

Remark 3. The robustness of AEs is affected by ACAC.
Further, most UAs are shown to be more robust than TAs in
our evaluation. Even for certain TAs, image transformations
can effectively mitigate the added perturbation.

Computation Cost. To evaluate the computation cost of
attacks, we test their runtime that is used to generate one AE
on average. It is important to know that comparing the exact
runtime of attacks is unfair due to multiple and complex fac-
tors (e.g., programming, parallelized computing or not, etc.),
which can lead to different runtime performance. Therefore,
we keep all attacks’ settings unchanged with their original
work and only give empirical results in our evaluations.

It is apparent that in the majority of cases, AEs of iterative
attacks are much more expensive to generate than those of
non-iterative attacks. On average, iterative attacks spend 10×
more runtime than non-iterative attacks. Among all iterative
attacks, we observe that OM, JSMA, BLB, CW2 and EAD
are noticeably slower than other iterative attacks.

B. Evaluation of Defenses

We evaluate the utility performance of defenses as below.
1) Experimental Setup: We use the same benchmark

datasets and models as used in Section IV-A. The evaluation
methodology is as follows. Firstly, for each complete defense,

we obtain the corresponding defense-enhanced model from the
original model. Using utility metrics in DUE, we then compare
the utility performance of the defense-enhanced model with
the original model on the testing set of each dateset. For
defense parameter settings in our evaluations, the criteria are:
(i) we follow the same/similar setting as in the original work of
defenses; (ii) if there are variants for one defense, we choose
the one with the best effectiveness performance. The details
of defense parameter settings are reported in Appendix IX-B.

2) Results: We present the evaluation results in Table IV.

TABLE IV
UTILITY EVALUATION RESULTS OF ALL COMPLETE DEFENSES

D
at

as
et

s Defense-enhanced
Models Accuracy CAV CRR CSR CCV COS

Category Name

M
N

IS
T

Adversarial
Training

NAT 99.51% 0.24% 0.44% 0.20% 0.17% 0.0006
EAT 99.45% 0.18% 0.44% 0.26% 0.19% 0.0007
PAT 99.36% 0.09% 0.39% 0.30% 0.33% 0.0012

Gradient
Masking

DD 99.27% 0.00% 0.41% 0.41% 0.14% 0.0005
IGR 99.09% -0.18% 0.32% 0.50% 3.03% 0.0111

Input
Transform.

EIT 99.25% -0.02% 0.42% 0.44% 0.26% 0.0010
RT 95.65% -3.62% 0.17% 3.79% 1.24% 0.0048
PD 99.24% -0.03% 0.06% 0.09% 0.09% 0.0002
TE 99.27% 0.00% 0.42% 0.42% 0.55% 0.0020

RC 99.27% 0.00% 0.07% 0.07% - -

C
IF

A
R

-1
0

Adversarial
Training

NAT 84.41% -1.54% 7.14% 8.68% 4.81% 0.0197
EAT 82.15% -3.80% 6.50% 10.30% 5.37% 0.0215
PAT 80.23% -5.72% 6.60% 12.32% 13.87% 0.0572

Gradient
Masking

DD 87.62% 1.67% 7.34% 5.67% 3.25% 0.0127
IGR 77.10% -8.85% 6.56% 15.41% 18.80% 0.0788

Input
Transform.

EIT 83.25% -2.45% 6.94% 9.39% 5.99% 0.0239
RT 78.50% -7.45% 3.22% 10.67% 4.63% 0.0171
PD 70.66% -15.29% 3.02% 18.31% 5.82% 0.0221
TE 88.63% 2.68% 8.13% 5.45% 4.36% 0.0173

RC 84.87% -1.08% 1.53% 2.61% - -

Although all defenses achieve comparable performances on
both MNIST and CIFAR-10, most defenses show that their
defense-enhanced models have variances for classification
accuracy on the testing set, which can be found in “Accuracy”
and “CAV” columns of Table IV. Particularly, the accuracy
variances of defense-enhanced models on CIFAR-10 are much
higher than those on MNIST. The reason we conjecture is that
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the 99.27% accuracy of the original model on MNIST has
already been sufficiently high and stabilized, and thus leaves
less variation space than that on CIFAR-10 models.

Among all defenses, NAT, DD, TE and RC on both MNIST
and CIFAR-10 almost do not sacrifice the classification ac-
curacy on the testing set according to the CAV results. On
the other hand, it can also be observed that the classification
accuracies of IGR-, RT- and PD-enhanced models have sig-
nificant drop when they are performed on CIFAR-10. In fact,
the performance of CAV is a consequence of the percentage
of examples that are rectified and sacrificed by the defended
model, which is confirmed by both CRR and CSR results
in corresponding columns of Table IV. Consequently, the
significant accuracy drop (i.e., CAV) is induced in the defense-
enhanced model as long as its CSR is larger than CRR.

According to the CCV results, most of defenses have little
impact on the prediction confidence of all correctly classified
testing examples before and after applying defenses. However,
compared to MNIST, the CCVs of defense-enhanced models
on CIFAR-10 are 10× higher in most cases. Even worse, for
PAT and IGR, the CCV of their defense-enhanced models
on CIFAR-10 are 18.80% and 13.87%, respectively. This is
because the defense-enhanced models on CIFAR-10 are less
stable, and thus their prediction confidence is more sensitive
to examples on the testing set.

As for the classification output stability of all defense-
enhanced models, we find that COS has the similar trend to
CCV. The reason we conjecture is that if the confidence of the
predicted class is fairly high for one example, the confidences
of other classes are quite small, accordingly. This implies
high variance of the predicted class’s probability can lead
to considerable adjustments of all other output probabilities.
Therefore, the prediction confidence variance greatly impacts
its output stability of classification, and thus the values of both
COS and CCV follow a similar trend.

Remark 4. Overall, as long as the defense-enhanced models
are trained or adjusted based on the accuracy metric, most of
them can also preserve the other utility performances, such as
CCV and COS.

C. Defenses vs. Attacks
Although there have been many sophisticated defenses and

strong attacks, it is still an open problem whether or to what
extent the state-of-the-art defenses can defend against attacks.

1) Complete Defenses: In this part, we evaluate the effec-
tiveness of all 10 complete defenses against attacks.

Experimental Setup. We use the same benchmark datasets
and their corresponding models as that in Section IV-A. The
evaluation methodology proceeds as follows. For each attack,
we first merely select the successfully misclassified AEs that
are generated in Section IV-A, and then we use all defense-
enhanced models (as used in Section IV-B) to evaluate the
classification performance on such AEs.

Results. We only present the results of CIFAR-10 in Ta-
ble V, as the results of MNIST are similar (detailed results
are reported in Appendix X).

Basically, most defense-enhanced models increase their
classification accuracy against existing attacks. When evaluat-
ing on CIFAR-10, NAT can successfully defend against more
than 80% AEs generated by all attacks on average, and all
defense-enhanced models averagely achieve 58.4% accuracy
over all kinds of AEs. Thus, we suggest that all state-of-the-
art defenses are more or less effective against existing attacks.

In general, most defenses show better defensive perfor-
mance against TAs than that on UAs. For CIFAR-10, all
defense-enhanced models averagely achieve 49.6% and 66.3%
accuracy against UAs and TAs, respectively. It implies that
AEs generated by UAs show stronger resilience to defense-
enhanced models, and thus become more difficult to defend.
We conjecture this is because UAs are more likely to general-
ize to other models including defense-enhanced models, while
TAs tend to overfit to the specific target model. Hence, AEs
generated by TAs are more easily classified by defenses.

With the increase of attacking ability for one specific attack,
fewer AEs can be classified by defense-enhanced models.
For instance, when we increase the ε of FGSM, we find
that the performance of all defenses has a significant drop.
Similar results are found when we increase the κ parameter
of CW2. The reason is evident. Since larger attacking ability
implies that higher magnitude of perturbations are generated
by attacks, which make the perturbed AEs more visually
dissimilar to the original examples.

Among all defenses, NAT, PAT, EAT, TE, EIT and IGR
show better and stable performance in defending against
most attacks. RT, PD and RC are observed to have worse
performance when defending against each attack on average
for both MNIST and CIFAR-10. We conjecture this is mainly
because they all retrain their model and obtain totally different
model weights. As we will present in Section V-A, without
any modification to the original model, merely retraining the
model can be a defense. Therefore, a defense that retrains the
model usually performs better than other defenses that do not
retrain their models, including RC, RT, PD.

According the results, all the defenses have the capability of
defending against some attacks, while no defense is universal
to all attacks. Taking the RC defense as an example, we find
that the RC has superior performance to defend against DF,
BLB, EAD and low-confidence CW2 (i.e., κ = 0), but it
achieves much worse performance on the other adversarial
attacks. Multiple reasons are responsible for the results such
as inherent limitations of defenses against different kinds of
attacks (e.g., RC defense is designed to defend against small
perturbations), the parameters employed by an algorithm, etc.

Remark 5. For complete defenses, most of them have capabil-
ity of defending against some adversarial attacks, but no de-
fense is universal. Particularly, the defenses that retrain their
models usually perform better than others without retraining.

2) Detection: Now, we evaluate the effectiveness of three
detection-only defenses against existing adversarial attacks.

Experimental Setup. We use the same benchmark datasets
and relative original models as used in Section IV-C1.
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TABLE V
CLASSIFICATION ACCURACY OF COMPLETELY DEFENSES AGAINST ADVERSARIAL ATTACKS ON CIFAR-10

D
at

as
et

s Attack Original
Model

Defense-enhanced Models
AverageUA/

TA
Objec-

tive Attacks # of
AEs

Adversarial Training Gradient Mask. Input Transformation RCNAT EAT PAT DD IGR EIT RT PD TE

C
IF

A
R

-1
0

UAs

L∞
ε=0.1

FGSM ε=0.1 897 0.0% 76.4% 57.0% 51.0% 7.9% 69.9% 66.7% 7.6% 6.9% 32.6% 0.1% 37.6%
ε=0.2 898 0.0% 52.7% 28.4% 18.5% 10.7% 51.6% 35.0% 4.8% 2.5% 13.3% 0.1% 21.7%

R+FGSM 837 0.0% 82.7% 80.4% 75.3% 12.2% 76.9% 79.9% 4.2% 4.5% 68.1% 0.0% 48.4%
BIM 1000 0.0% 84.7% 81.1% 82.4% 3.8% 77.4% 82.3% 0.0% 2.5% 76.5% 0.0% 49.1%
PGD 1000 0.0% 81.9% 77.8% 74.3% 0.7% 75.1% 79.7% 0.0% 0.2% 64.7% 0.0% 45.4%

U-MI-FGSM 1000 0.0% 78.7% 65.5% 69.5% 2.7% 73.0% 69.6% 0.0% 0.0% 47.5% 0.0% 40.7%
UAP 853 0.0% 80.9% 79.8% 60.8% 5.4% 74.4% 71.4% 3.8% 21.3% 47.8% 1.4% 44.7%

L2
DF 1000 0.0% 88.9% 86.6% 83.3% 89.3% 79.2% 87.1% 83.2% 74.9% 92.9% 91.3% 85.7%
OM 1000 0.0% 88.9% 86.1% 82.3% 81.6% 79.0% 87.4% 52.2% 70.5% 91.1% 14.8% 73.4%

TAs

L∞
ε=0.1

LLC 134 0.0% 79.9% 65.7% 61.2% 1.5% 76.9% 70.2% 3.0% 6.0% 29.9% 0.0% 39.4%
R+LLC 315 0.0% 84.4% 86.0% 81.3% 6.7% 81.9% 86.0% 4.1% 5.1% 73.3% 0.0% 50.9%
ILLC 1000 0.0% 86.6% 85.3% 83.7% 27.6% 78.2% 86.9% 0.9% 49.7% 88.5% 0.0% 58.7%

T-MI-FGSM 1000 0.0% 83.1% 71.4% 70.2% 11.2% 74.5% 78.5% 0.8% 0.0% 61.4% 0.0% 45.1%
L0 JSMA 997 0.0% 68.0% 75.1% 72.7% 50.3% 73.5% 70.0% 37.1% 27.1% 75.5% 16.2% 56.6%

L2

BLB 1000 0.0% 89.1% 86.4% 83.0% 89.8% 79.2% 87.4% 83.9% 74.1% 92.8% 91.1% 85.7%

CW2 κ=0 1000 0.0% 88.8% 86.5% 83.0% 89.5% 79.2% 88.6% 82.9% 76.7% 92.5% 90.2% 85.8%
κ=20 1000 0.0% 88.6% 86.3% 82.3% 82.8% 79.2% 88.0% 26.5% 74.4% 92.2% 14.6% 71.5%

EAD EN 1000 0.0% 88.5% 86.5% 82.5% 89.2% 79.1% 88.0% 79.3% 74.8% 92.7% 87.5% 84.8%
L1 1000 0.0% 88.4% 86.6% 82.6% 88.4% 79.0% 86.3% 81.0% 76.2% 92.6% 88.4% 85.0%

Average 891.1 0.0% 82.2% 76.8% 72.6% 39.5% 75.6% 78.4% 29.2% 34.1% 69.8% 26.1% 58.4%

The evaluation methodology proceeds as follows. Firstly,
for each attack, we select all successfully misclassified AEs
that are generated in Section IV-A. Then, to make the dataset
balanced for detection, we randomly select the same number
of normal examples from the testing set to build a mixed
set for each attack. To eliminate biases in our evaluation, all
selected normal examples can be correctly recognized by the
original model. Finally, we examine the effectiveness of the
three detection-only defenses against all kinds of attacks. For
the parameter settings of detection, we mainly follow the same
or similar settings as in their original papers. The details of
their parameter settings are deferred to Appendix IX-B.

Results. Due to the space limitation, we only present the
results of CIFAR-10 in Table VI (detailed results of MNIST
are reported in Appendix X) and analyze them as follows.

To measure the overall detection performance, we calculate
their AUC scores as AUC is independent with the manually
selected threshold. According to the results, all detection
methods can yield fairly high AUC scores against most attacks.
The average AUCs of the three detection methods are all
higher than 70%, i.e., they show comparable discriminative
power against existing attacks. Specifically, LID has the best
performance in terms of AUC than others in most cases.
However, even for the best detection method LID on CIFAR-
10, it almost fails to detect AEs generated by DF and OM, with
AUC about 65%, which is lower than that of FS or MagNet
(over 80% on average).

In addition to AUC, we also evaluate the true positive rate
(TPR) and false positive rate (FPR) of different detection
methods on the mixed testing set. In order to fairly compare
the detection rate (i.e., TPR), we try our best to adjust the
FPR values of all detection methods to the same level via fine-
tuning the parameters. In our evaluations, we first set the FPR
of all the detection methods to around 4%, and then compare
their TPRs.

According to the results, LID has the highest average TPR
against all kinds of AEs. Although FS and MagNet have

higher average TPRs on MNIST (i.e., more than 90%, see
Appendix X for details), their average TPRs on CIFAR-10 are
much lower. One possible reason we conjecture is that we only
choose one threshold for each detection method to discriminate
diverse AEs generated by all attacks. We suggest that we can
improve the TPR performance within an acceptable FPR of the
detection method via fine-tuning the parameters or adjusting
the threshold. For instance, we believe the TPRs of FS against
DF, BLB, CW2 and EAD can be significantly increased since
their corresponding AUC scores are much higher (all over
86%).

For detection-only defense, it is hypothesized that AEs with
higher magnitude of perturbation are easier to be detected
since most detection methods are based on the difference
between normal and adversarial examples. To better under-
stand the influence of the perturbation of AEs on detection,
we conduct a simple test on FGSM with different ε, and
the results are shown in Table VII. According to the results,
we observe that there is no clear relationship between the
magnitude of perturbation of AEs and detection AUC. Thus,
we argue that we cannot conclude AEs with higher magnitude
of perturbation are easier to be detected.

Remark 6. All detection methods show comparable discrimi-
native ability against existing attacks. Different detection meth-
ods have their own strengths and limitations facing various
kinds of AEs. It is not the case that AEs with high magnitude
of perturbation are easier to be detected.

V. CASE STUDIES

To further demonstrate the functionality of DEEPSEC as a
uniform and comprehensive analysis platform, we present two
case studies in this section.

A. Case Study 1: Transferability of Adversarial Attacks

The transferability is an intriguing property that AEs gen-
erated against one target model can also be misclassified
by other models. Although there has been several literature
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TABLE VI
EVALUATION RESULTS OF DETECTION-ONLY DEFENSES AGAINST ALL ADVERSARIAL ATTACKS

D
at

as
et Attack # of

Examples

Detection-only Defenses
UA/
TA

Objec-
tive Attacks LID FS MagNet

TPR FPR AUC TPR FPR AUC TPR FPR AUC

C
IF

A
R

-1
0

UAs

L∞
ε=0.1

FGSM 1794 100.0% 5.1% 100.0% 9.5% 2.9% 82.6% 99.1% 4.7% 93.5%
R+FGSM 1674 100.0% 2.9% 100.0% 6.0% 4.8% 70.7% 33.3% 3.2% 83.2%

BIM 2000 94.6% 2.9% 99.1% 1.6% 4.5% 25.5% 1.8% 4.2% 53.0%
PGD 2000 99.9% 3.5% 100.0% 0.4% 3.8% 16.5% 3.2% 4.3% 59.2%

U-MI-FGSM 2000 100.0% 3.0% 100.0% 1.8% 4.1% 23.8% 6.3% 4.1% 57.1%
UAP 1706 100.0% 5.3% 100.0% 2.9% 3.8% 76.3% 99.5% 5.9% 94.9%

L2
DF 2000 9.2% 5.7% 64.0% 1.5% 3.9% 86.3% 21.5% 2.8% 81.0%
OM 2000 8.8% 4.9% 65.1% 25.0% 3.8% 89.0% 46.4% 3.9% 78.7%

TAs

L∞
ε=0.1

LLC 268 100.0% 1.5% 100.0% 3.7% 9.0% 73.5% 100.0% 6.7% 91.8%
R+LLC 630 99.0% 5.7% 99.2% 11.7% 5.1% 71.0% 31.4% 3.8% 81.2%
ILLC 2000 79.2% 5.3% 96.1% 51.7% 3.3% 83.9% 2.6% 4.7% 61.2%

T-MI-FGSM 2000 100.0% 5.8% 100.0% 10.0% 3.8% 45.0% 10.4% 3.8% 57.9%
L0 JSMA 1994 71.5% 3.4% 94.4% 20.6% 3.7% 91.7% 53.2% 5.3% 92.3%

L2

BLB 2000 13.0% 3.1% 72.3% 1.7% 4.1% 89.3% 52.5% 4.3% 81.6%
CW2 2000 19.9% 3.8% 77.6% 0.9% 3.7% 88.1% 38.4% 4.4% 81.8%

EAD (EN) 2000 17.2% 4.0% 73.8% 1.9% 3.5% 89.8% 54.2% 5.0% 82.1%
EAD (L1) 2000 23.0% 5.7% 76.3% 1.1% 3.8% 86.4% 35.6% 4.3% 81.4%

AVERAGE 1768.6 66.8% 4.2% 89.3% 8.9% 4.2% 70.0% 40.6% 4.4% 77.2%

TABLE VII
DETECTION-ONLY DEFENSES AGAINST

FGSM WITH DIFFERENT ε

D
at

as
et

s FGSM AUC

ε
# of

examples LID FS MagNet

M
N

IS
T

0.1 138 90.4% 99.8% 100.0%
0.2 432 85.0% 99.4% 100.0%
0.3 608 93.7% 99.1% 100.0%
0.4 734 97.7% 99.0% 100.0%
0.5 896 98.2% 99.0% 100.0%
0.6 1032 98.7% 99.0% 100.0%

C
IF

A
R

-1
0

0.1 1794 100.0% 82.6% 93.5%
0.2 1796 95.2% 89.7% 98.8%
0.3 1820 39.6% 58.7% 99.0%
0.4 1820 15.7% 31.5% 96.6%
0.5 1820 6.4% 21.6% 91.8%
0.6 1820 6.6% 17.8% 87.1%

discussing the transferability of AEs [2], [18], [50], [51], no
work comprehensively evaluates the transferability of AEs
generated by existing attacks. In this case study, we conduct
a series of experiments on existing attacks and compare their
transferability performance on different target models.

1) Experimental Setup: We use the same benchmark
datasets and corresponding original models as that in Sec-
tion IV-A. Besides, we prepare three additional DL models:

• Model 1: We train model 1 that is identical to the original
model, but with different random initializations.

• Model 2: We train model 2 that keeps the same con-
figurations as the original DL model, except the network
architecture is slightly different.

• Model 3: We train model 3 as a totally different model.

The evaluation methodology is that we first independently
train the three above models on each dataset with comparable
accuracy. Then, we employ the three trained models to classify
the misclassified AEs generated in Section IV-A. Finally, to
compare the transferability of adversarial attacks, we evaluate
the MR and ACAC of each model for each dataset.

2) Results: We present the results of CIFAR-10 in Ta-
ble VIII, and the conclusions on MNIST are similar (detailed
results are reported in Appendix XI).

Apparently, all adversarial attacks show more or less trans-
ferability on other models. As shown in Table VIII, the trans-
ferability rates of most attacks on the three models are over
10%. Moreover, the average transferability rate of all attacks
on the three models is 42.4%. This empirically confirms the
existence of transferability of all adversarial attacks.

In particular, the confidence (ACAC) of AEs that success-
fully transfer to other models is higher than that of AEs that are
misclassified on the original model. For instance, on CIFAR-10
the average confidence of AEs that transfer to the three models
is 0.812, while the ACAC of AEs misclassified by the original
model is 0.751. This may be explained as since successfully
transferred AEs are part of AEs misclassified by the original
model and low-confidence AEs usually fail to transfer, the
confidence of transferable AEs is selectively higher.

For the impact of model diversity, we observe that the attack
transferability differs marginally across different target models
(i.e., model 1, model 2 and model 3). On CIFAR-10, all three
models averagely achieve approximately 42% transferability
rate. It indicates that the transferability of AEs is independent
of the model architecture, which confirms the finding in [50].

In general, different kinds of attacks tend to have different
transferability performance, which implies different attack
abilities under black-box scenarios. To be specific, the transfer-
ability differences of different attacks have two facets. First,
AEs generated by UAs are more transferable than those of
TAs. For CIFAR-10, the average transferability rate of UAs is
74.6%, which is much higher than that of TAs (i.e., 10.0%).
This confirms the conclusion in [51]. Secondly, for both UAs
and TAs, L∞ attacks are much more transferable than others
(i.e., L2 and L0 attacks). In particular, we observe that the
average transferability rate of all L∞ UAs (i.e., more than
90%) is several times higher than other UAs on CIFAR-10.
Similar results are observed in TAs. We conjecture that one
possible reason is that L∞ attacks tend to perturb every pixel
of the original image with the L∞ constraint, and thus the AEs
generated by them are more perceptible than others, which can
be observed and confirmed in Table III.

Remark 7. Different attacks have different transferability: (i)
we confirm that UAs are more transferable than TAs; (ii) we
find that L∞ attacks are more transferable than other attacks
(i.e., L2 and L0 attacks). Furthermore, the confidence of AEs
that can transfer to other models is higher than that of AEs
that can only be misclassified by the original model.

B. Case Study 2: Is Ensemble of Defenses More Robust?

For classification tasks, ensemble methods are widely used
in research and competitions to improve the performance [52],
[53]. Recently, the idea of ensemble has been used to defend
against adversarial attacks [16], [31], [54]–[56]. However, the
effectiveness of ensemble against adversarial attacks is still
chaotic: some believes that ensemble of multiple diverse clas-
sifiers (e.g., clean or defense-enhanced models) can increase
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TABLE VIII
TRANSFERABILITY RATE OF ALL ADVERSARIAL ATTACKS ON CIFAR-10

D
at

as
et

s Attack Original Model Model 1 Model 2 Model 3 Average
MR of 3
Models

Average
ACAC of
3 Models

UA/
TA

Objec-
tive Attacks # of

AEs MR ACAC MR ACAC MR ACAC MR ACAC

C
IF

A
R

-1
0

UAs

L∞
ε=0.1

FGSM ε=0.1 897 100.0% 0.743 88.2% 0.922 88.4% 0.841 92.4% 0.674 89.7% 0.812
ε=0.2 898 100.0% 0.873 86.3% 0.878 91.0% 0.804 93.3% 0.731 90.2% 0.804

R+FGSM 837 100.0% 0.846 89.1% 0.863 88.8% 0.830 90.0% 0.699 89.3% 0.797
BIM 1000 100.0% 1.000 96.2% 0.940 96.0% 0.949 93.5% 0.893 95.2% 0.927
PGD 1000 100.0% 1.000 98.2% 0.933 99.4% 0.952 98.8% 0.914 98.8% 0.933

U-MI-FGSM 1000 100.0% 1.000 97.0% 0.934 97.9% 0.926 97.0% 0.841 97.3% 0.900
UAP 853 100.0% 0.723 87.0% 0.868 88.5% 0.744 90.4% 0.682 88.6% 0.764

L2
DF 1000 100.0% 0.516 13.1% 0.769 10.7% 0.788 11.5% 0.705 11.8% 0.754
OM 1000 100.0% 0.750 22.7% 0.788 20.9% 0.805 19.2% 0.721 20.9% 0.771

Average of UAs 942.8 100.0% 0.828 74.7% 0.876 74.3% 0.848 74.9% 0.762 74.6% 0.829

TAs

L∞
ε=0.1

LLC 134 100.0% 0.768 3.7% 0.871 14.2% 0.770 17.9% 0.632 11.9% 0.758
R+LLC 315 100.0% 0.876 18.1% 0.826 24.1% 0.828 35.2% 0.774 25.8% 0.809
ILLC 1000 100.0% 1.000 25.3% 0.875 27.0% 0.863 23.0% 0.823 25.1% 0.854

T-MI-FGSM 1000 100.0% 1.000 42.7% 0.893 43.0% 0.916 34.0% 0.870 39.9% 0.893
L0 JSMA 997 100.0% 0.508 7.7% 0.833 9.0% 0.769 7.6% 0.755 8.1% 0.786

L2

BLB 1000 100.0% 0.500 1.8% 0.778 1.6% 0.783 1.5% 0.737 1.6% 0.766

CW2 κ=0 1000 100.0% 0.393 1.8% 0.751 1.5% 0.815 1.4% 0.759 1.6% 0.775
κ=20 1000 100.0% 1.000 6.2% 0.821 7.8% 0.860 5.6% 0.722 6.5% 0.801

EAD EN 1000 100.0% 0.433 1.9% 0.768 2.1% 0.764 1.6% 0.741 1.9% 0.758
L1 1000 100.0% 0.377 1.9% 0.781 2.1% 0.749 1.4% 0.781 1.8% 0.770

Average of UAs 844.6 100.0% 0.685 9.7% 0.811 10.6% 0.809 9.5% 0.760 10.0% 0.794
Totally Average 891.1 100.0% 0.753 41.5% 0.847 42.8% 0.829 42.9% 0.761 42.4% 0.812

its resistance against attacks [31], [54], while others hold
the negative opinion [55]. To figure out the effectiveness of
different ensemble defenses against attacks, in this case study,
we evaluate the classification performance (i.e., accuracy and
confidence) of three different ensemble methods.

1) Experiment Setup: We use the same benchmark datasets
and corresponding original models as used in Section IV-A.
In addition, we use three ensemble methods as follows.

Completely-random Ensemble: randomly select 3 de-
fenses from all 9 complete defenses.3

Interclass-random Ensemble: randomly select 1 defense
separately from 3 categories of complete defenses and thus a
total of 3 defenses are selected.

Best-defense Ensemble: select the best three defenses that
outperform others in defending against various adversarial
attacks. As analyzed in Section IV-C1, PAT, TE and NAT are
the best three defenses for MINST. For CIFAR-10, NAT, EIT
and EAT are the best on average.

The experimental methodology proceeds as follows. First,
we prepare successful AEs that are generated by each attack
in Section IV-A. For each ensemble method, we get 3 selected
defense-enhanced models from Section IV-B. Finally, for each
testing AE, we predict it by letting each defense-enhanced
model votes for a label, i.e., yen = argmax

k

∑3
i=1 Pi(x)k.

Additionally, to avoid accidental phenomena in random-based
ensemble methods, we independently repeat the first two
ensemble methods 3 times and calculate the average.

2) Results: Table IX shows the results of CIFAR-10, and
similar results on MNIST are reported in Appendix XI.

Generally, different ensemble methods show different defen-
sive performance. Among the three ensembles, the completely-
random ensemble performs the worst while the best-defense
ensemble performs the best w.r.t accuracy and confidence. The
reason is that the performance of ensemble mainly depends

3We exclude RC in our ensemble methods as it does not provide confidence
information for the testing examples.

TABLE IX
PERFORMANCE OF DIFFERENT ENSEMBLE METHODS ON CIFAR-10

D
at

as
et Attack Orig-

inal
model

Ensemble Methods

UA/
TA

Objec-
tive Attacks # of

AEs

Completely-
random

Interclass-
random Best-defense

Acc. Conf. Acc. Conf. Acc. Conf.

C
IF

A
R

-1
0

UAs

L∞
ε=0.1

FGSM ε=0.1 897 0% 35% 0.56 57% 0.63 73% 0.80
ε=0.2 898 0% 26% 0.56 28% 0.63 42% 0.72

R+FGSM 837 0% 40% 0.57 80% 0.67 87% 0.87
BIM 1000 0% 29% 0.58 78% 0.68 88% 0.88
PGD 1000 0% 24% 0.62 73% 0.66 85% 0.86

U-MI-FGSM 1000 0% 24% 0.58 62% 0.64 78% 0.83
UAP 853 0% 41% 0.56 76% 0.66 83% 0.85

L2
DF 1000 0% 93% 0.85 91% 0.83 91% 0.91
OM 1000 0% 88% 0.79 90% 0.84 92% 0.90

Average of UAs 943 0% 44% 0.63 71% 0.70 80% 0.85

TAs

L∞
ε=0.1

LLC 134 0% 30% 0.54 66% 0.63 78% 0.83
R+LLC 315 0% 39% 0.55 86% 0.68 91% 0.89
ILLC 1000 0% 63% 0.61 87% 0.76 91% 0.90

T-MI-FGSM 1000 0% 34% 0.58 71% 0.66 84% 0.85
L0 JSMA 997 0% 6% 0.70 77% 0.75 76% 0.85

L2

BLB 1000 0% 93% 0.85 92% 0.85 91% 0.91

CW2 κ=0 1000 0% 93% 0.85 92% 0.86 92% 0.91
κ=20 1000 0% 87% 0.77 91% 0.85 91% 0.91

EAD EN 1000 0% 93% 0.84 92% 0.85 92% 0.91
L1 1000 0% 93% 0.8 92% 0.85 91% 0.91

Average of TAs 845 0% 69% 0.71 84% 0.77 88% 0.89
Average 891 0% 57% 0.67 78% 0.74 84% 0.87

on the individual defense, and thus the best-defense ensemble
outperforms others.

We observe that ensemble of different defenses does not per-
form better than each individual defense on average. Accord-
ing to the results, the completely-random ensemble averagely
achieves 57% accuracy on all attacks, which is comparable to
58.4% of all defenses as previously shown in Table V. Even
for the best-defense ensemble, it does not significantly improve
the accuracy than the most successful defense. Particularly, the
average accuracy of best-defense ensemble against all attacks
is 84%, which is marginally greater than 82.2% achieved by
the most successful defense NAT on CIFAR-10. This partially
confirms the conclusion that ensemble of multiple defenses
does not guarantee to perform better [55].

On the other hand, ensemble of multiple defenses can
improve the lower bound of defense ability for individuals
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against certain adversarial attacks. According to the results,
there is no extremely low classification accuracy for ensemble
models. As we analyzed in Section IV-C1, most individual
defenses have the capability of defending against some specific
adversarial attacks but not all attacks. For some individual
defenses, their classification accuracy on some attacks even
drops significantly below 10%, but not the case with ensemble.
Even in the worst ensemble of completely-random, their
classification accuracy on CIFAR-10 are above 20%.

Remark 8. For ensemble methods, we confirm that ensemble
of different defenses cannot significantly improve the defensive
capabilities as a whole [55], but it can improve the lower
bound of defense ability for individuals.

VI. DISCUSSION

Limitations and Future Work. Below, we discuss the
limitations of this work along with the future work.

Firstly, we only integrate the most representative 16 ad-
versarial attacks and 13 defenses. Even though we do cover
all the categories of the state-of-the-art attacks and defenses,
DEEPSEC does not enumerate and implement all strategies due
to the fact some strategies have similar methodology. However,
DEEPSEC employs a modular design and implementation,
which makes it easy for users to integrate new attacks,
defenses and corresponding utility metrics. Hence, we open
source DEEPSEC and encourage the public to contribute.

Secondly, due to space limitations, we employ one setting
for each individual attack and defense. To be specific, the
exclusive parameters among different attacks or defenses are
kept with the same or similar with the original settings in the
papers, while the common parameters are kept the same for
fair comparison. However, based on DEEPSEC, it is easy to
extend the evaluations to different settings.

Finally, in the current implementation, we mainly focus
on non-adaptive and white-box attacks. Nevertheless, we em-
phasize that the modular and generic design of DEEPSEC
enables it to be readily extendable to support many other
adversarial attacks via controlling the information available
to the attacks/defenses. For instance, adaptive attacks [9],
[35] are easily incorporated into DEEPSEC if the adversary is
allowed to access the deployed defense-enhanced model when
generating AEs; to support black-box attacks [33], [34], we
may restrict the attacks’ access to only the input and output
of DL models; for unsupervised learning (e.g., generative
models) [57], [58], we may disable the attacks’ access to
the label information. As the modular implementation of
DEEPSEC provides standard interfaces for accessing data and
models, such extensions can be readily implemented.

Additional Related Work. Currently, several attack/defense
platforms have been proposed, like Cleverhans [14], Fool-
box [59], AdvBox [60], ART [61], etc. Cleverhans is the
first open-source library that mainly uses Tensorflow [62] and
currently provides implementations of 9 attacks and 1 simple
adversarial training based defense. Foolbox improves upon
Cleverhans by interfacing it with other popular DL frameworks

such as PyTorch [45], Theano [63], and MXNet [64]. Advbox
is implemented on the PaddlePaddle [65] and includes 7
attacks. ART also provides a library that integrates 7 attacks
and 5 defenses. However, DEEPSEC differs from the exiting
work in several major aspects:

1) Existing platforms provide a fairly limited number of
adversarial attacks and only few of them implement
defense methods. However, DEEPSEC incorporates 16
attacks and 13 defenses, covering all the categories of
the state-of-the-art attacks and defenses.

2) In addition to a rich implementation of attacks/defenses.
DEEPSEC treats evaluation metrics as the first-class cit-
izens and implements 10 attack and 5 defense utility
metrics, which help assess given attacks/defenses.

3) Rather than solely providing reference implementation
of attacks/defenses, DEEPSEC provides a unique analysis
platform, which enables researchers and practitioners to
conduct comprehensive and informative evaluation on
given attacks, defences, and DL models.

VII. CONCLUSION

We design, implement and evaluate DEEPSEC, a uniform
security analysis platform for deep learning models. In its
current implementation, DEEPSEC incorporates 16 state-of-
the-art adversarial attacks with 10 attack utility metrics and 13
representative defenses with 5 defense utility metrics. To our
best knowledge, DEEPSEC is the first-of-its-kind platform that
supports uniform, comprehensive, informative, and extensible
evaluation of adversarial attacks and defenses. Leveraging
DEEPSEC, we conduct extensive evaluation on existing attacks
and defenses, which help answer a set of long-standing ques-
tions. We envision that DEEPSEC is able to serve as a useful
benchmark to facilitate adversarial deep learning research.
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[16] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses,” in ICLR, 2018.

[17] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” in ICLR, 2017.

[18] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in ICLR, 2018.

[19] Y. Dong, F. Liao, T. Pang, H. Su, X. Hu, J. Li, and J. Zhu, “Boosting
adversarial attacks with momentum,” arXiv:1710.06081, 2017.

[20] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A
simple and accurate method to fool deep neural networks,” in CVPR,
2016.

[21] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in CVPR, 2017.

[22] W. He, B. Li, and D. Song, “Decision boundary analysis of adversarial
examples,” in ICLR, 2018.

[23] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh, “EAD: elastic-
net attacks to deep neural networks via adversarial examples,” in AAAI,
2018.

[24] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” in ICLR, 2017.
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VIII. MODEL ARCHITECTURES

A. The Original Model Architectures

Table X and Table XI show the originally DL model ar-
chitectures (Model 1) of MNIST and CIFAR-10, respectively.
For simplicity, the details of Layer 1, Layer 2 and Layer 3
layers’s details are summarized in Table XII.

TABLE X
ORIGINAL MODEL (MODEL 1) FOR MNIST

Layer Type MNIST Architecture
Relu Conv. 32 filters (3*3)
Relu Conv. 32 filters (3*3)

Max Pooling (2*2)
Relu Conv. 64 filters (3*3)
Relu Conv. 64 filters (3*3)

Max Pooling (2*2)
Flatten

Relu FC 200 units
Dropout 0.5
Relu FC 200 units

Softmax FC (10)

TABLE XI
ORIGINAL MODEL (MODEL 1) FOR CIFAR-10

Layer Type CIFAR-10 Architecture
(ResNet-20)

Layer 1: filters=16, strides=1
Layer 2: filters=16, strides=1
Layer 2: filters=16, strides=1
Layer 2: filters=16, strides=1
Layer 3: filters=32, strides=2
Layer 2: filters=32, strides=1
Layer 2: filters=32, strides=1
Layer 3: filters=64, strides=2
Layer 2: filters=64, strides=1
Layer 2: filters=64, strides=1

Average Pooling (8*8)
Flatten

Softmax FC (10)

TABLE XII
DETAILS OF L1, L2 AND L3 FOR RESNET

Layer 1: filters, strides

Conv2D filters, kernel size=3, strides, kernel init=’he normal’,
kernel regularizer=l2(1e-4)

BN
Activation relu
Layer 2: filters, strides

Conv2D filters, kernel size=3, strides, kernel init=’he normal’,
kernel regularizer=l2(1e-4)

BN
Activation relu

Conv2D filters, kernel size=3, strides=1, kernel init=’he normal’,
kernel regularizer=l2(1e-4)

BN
Activation relu
Layer 3: filters, strides

Conv2D

filters, kernel size=3,
strides,

kernel init=’he normal’,
kernel regularizer=l2(1e-4)

Conv2D

filters, kernel size=1,
strides,

kernel init=’he normal’,
kernel regularizer=l2(1e-4)

BN
Activation relu

Conv2D filters, kernel size=3, strides=1, kernel init=’he normal’,
kernel regularizer=l2(1e-4)

BN
Activation relu

B. Other Models for the Transferability Case Study

For Model 2, we add one convolution block to the original
model for MNIST and choose a similar ResNet-56 for CIFAR-
10. For Model 3, we use AlexNet [66] and DenseNet [67] in
MNIST and CIFAR-10, respectively.

IX. PARAMETER SETTINGS

A. Attacks Settings

The detailed parameter settings of all the attacks are sum-
marized in Table XIII.

B. Defense Settings

• NAT: The loss function of NAT is weighted with 100%
normal examples and 30% AEs generated by LLC. For
MNIST, ε is randomly chosen from a normal distribution
N(μ= 0, σ = 50) and then clipped into interval [0, 0.3]. For
CIFAR-10, ε is randomly chosen from a normal distribution
N(μ=0, σ=15) and clipped into interval [0, 0.1].
• EAT: EAT augments training data with AEs generated

by R+FGSM on 4 different pre-trained models. For MINST,
ε = 0.3 and α = 0.05 are set for R+FGSM. For CIFAR-10,
ε=0.0625 and α=0.03125 are set for R+FGSM.
• PAT: The PAT method retrains the model with only AEs

generated by the PGD attack. For MNIST: attack steps=40,
step size=0.01 and ε=0.3; For CIFAR-10: attack steps=
7, step size=0.007843, ε=0.03137.
• DD: For both MNIST and CIFAR-10, T is set to be 50.
• IGR: The λ regularization terms of MNIST and CIFAR-

10 are set to 316 and 10, respectively.
• EIT: In our evaluation, we orderly employ the following

four image transformation techniques.
1) Image Crop and Rescaling. For MINST, images are

cropped from 28*28 to 26*26, and then rescaled back to
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TABLE XIII
PARAMETER SETTING FOR ALL ADVERSARIAL ATTACKS IN EVALUATIONS

D
at

as
et Attacks

ConfigurationsUA/
TA

Objec-
tive Attacks

M
N

IS
T

UA

L∞
ε=0.3

FGSM ε=0.3 ε=0.3
ε=0.5 ε=0.5

R+FGSM ε=0.15 α=0.15
BIM ε=0.3 eps iter=0.05
PGD ε=0.3 eps iter=0.05

U-MI-FGSM ε=0.3 eps iter=0.05
UAP ε=0.3 fool rate=30%

L2
DF overshoot=0.02 max iter=50

OM
batch size=1000;
initial const=0.02;
bin search steps=4

learning rate=0.2;
noise count=20;
noise mag=0.3

TA

L∞
ε=0.3

LLC ε = 0.3
R+LLC ε=0.15 α=0.15
ILLC ε=0.3 eps iter=0.05

T-MI-FGSM ε=0.3 eps iter=0.05
L0 JSMA θ=1 γ=0.1

L2

BLB None

CW2 κ=0
batch size=10;

learning rate=0.02
box=-0.5, 0.5;

init const=0.001

κ=20
batch size=10;

learning rate=0.02
box=-0.5, 0.5;

init const=0.001

EAD EN κ=0
batch size=10;
β=1e− 3

L1 κ=0
batch size=10;
β=1e− 3

C
IF

A
R

-1
0

UA

L∞
ε=0.1

FGSM ε=0.1 ε=0.1
ε=0.2 ε=0.2

R+FGSM ε=0.05 α=0.05
BIM ε=0.1 eps iter=0.01
PGD ε=0.1 eps iter=0.01

U-MI-FGSM ε=0.1 eps iter=0.01
UAP ε=0.1 fool rate=80%

L2
DF overshoot=0.02 max iter=50

OM
batch size=1;

bin search steps=4;
initial const=1

learning rate=0.02;
noise count=20;
noise mag=8/255

TA

L∞
ε=0.1

LLC ε=0.1
R+LLC ε=0.05 α=0.05
ILLC ε=0.1 eps iter=0.01

T-MI-FGSM ε=0.1 eps iter=0.01
L0 JSMA θ=1 γ=0.1

L2

BLB None

CW2 κ=0
batch size=10;

learning rate=0.02
box=-0.5, 0.5;

init const=0.001

κ=20
batch size=10;

learning rate=0.02
box=-0.5, 0.5;

init const=0.001

EAD EN κ=0
batch size=10;
β=1e− 3

L1 κ=0
batch size=10;
β=1e− 3

28*28; For CIFAR-10, images are cropped from 32*32
to 30*30, and then rescaled back to 32*32.

2) Total Variance Minimization. We employ a special-
purpose solver based on the split Bregman method with
p=2 and λTV =0.03.

3) JPEG Compression. We perform JPEG compression at
quality level 85 (out of 100).

4) Bit-depth Reduction. We set depth = 4.

• RT: For MNIST, random resizing layer: (28 ∗ 28) →
(rnd∗rnd) and random padding layer: (rnd∗rnd) → (31∗31)
where rnd is a random integer between 28 and 31 from a
uniform distribution; For CIFAR-10, random resizing layer:
(32 ∗ 32) → (rnd ∗ rnd) and random padding layer: (rnd ∗

rnd) → (36 ∗ 36) where rnd is a random integer between 32
and 36 from a uniform distribution.
• PD: For MNIST, the BPD of its PixelCNN model is

set to 0.8836 and the defense parameter εdefend is 0.3; For
CIFAR-10, the BPD of its PixelCNN model is set to 3.0847
and the defense parameter εdefend is 0.0627.
• TE: For MNIST, the TE-based model use 16 level dis-

cretization and adversarially trained with the LS-PGA attack
(ε = 0.3, ξ = 0.01 and 40 steps); For CIFAR-10, the TE-based
model use 16 level discretization and adversarially trained with
the LS-PGA attack (ε = 0.031, ξ = 0.01 and 7 steps).
• RC: We sample 1000 data points from the hypercube,

i.e., m = 1000. For MNIST, the length r of hypercube is set
to be 0.3; For CIFAR-10, r is set to be 0.02.
• LID: For MNIST, we train a logistic regression classifier

where the training set consists of a positive set and a negative
set. Particularly, the positive set is the set of AEs generated
by FGSM with ε = 0.3; the negative set consists of normal
testing examples and their corresponding noisy examples with
L2 Gaussian noise. For CIFAR-10, we also train a logistic
regression classifier with the similar training set, but the ε of
FGSM is set to 0.1. As for both classifiers, we set k = 20 and
minibatch = 100 in the LID algorithm.
• FS: For MNIST, we first employ two squeezers: Bit

Depth (1bit) and Median Smoothing (2×2), and then train the
classifier whose FPR is controlled at around 4%; For CIFAR-
10, we employ three squeezers: Bit Depth (5bit), Median
Smoothing (2×2) and Non-local Means (13-3-2), and then
train the classifier with about 4% FPR.
• MagNet: For MNIST, we employ two detectors: recon-

struction error-based detectors that use the L1 and L2 norm,
and then train the classifier whose FPR is controlled at around
4%; For CIFAR-10, we employ three detectors: reconstruction
L1 error-based detector and two probability divergence-based
detectors with temperature T of 10 and 40, respectively; Also,
we control the FPR of classifier at around 4%.

X. SUPPLEMENTARY EVALUATION RESULTS

In this part, we provide more evaluation results of MNIST
for Section IV. We provide the utility evaluation results of
existing attacks in Table XIV. In Table XV, we report the
classification performance of all complete defenses against
existing attacks. In Table XVI, we also report the detection per-
formance of detection-only defenses against existing attacks.

XI. SUPPLEMENTARY RESULTS OF CASE STUDIES

In this part, we provide more results of MNIST for Sec-
tion V. In Table XVII, we report the transferability per-
formance of all attacks. We also provide the classification
performance of different ensembles in Table XVIII.
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TABLE XIV
UTILITY EVALUATION RESULTS OF ALL ATTACKS ON MNIST

D
at

as
et

s Attack Misclassification Imperceptibility Robustness
CCUA/

TA
Objec-

tive Attacks MR ACAC ACTC ALDp ASS PSD NTE RGB RIC
L0 L2 L∞

M
N

IS
T

UAs

L∞
ε=0.3

FGSM ε=0.3 30.4% 0.762 0.065 0.398 4.887 0.300 0.554 67.589 0.643 0.908 1.000 0.0012
ε=0.5 44.8% 0.705 0.071 0.382 7.795 0.500 0.350 105.763 0.566 0.933 1.000 0.0012

R+FGSM 34.2% 0.766 0.073 0.540 4.866 0.300 0.553 84.001 0.648 0.874 0.991 0.0013
BIM 75.6% 0.995 0.004 0.740 4.527 0.300 0.572 83.466 0.990 0.979 0.894 0.0014
PGD 82.4% 0.996 0.004 0.825 4.918 0.300 0.564 94.842 0.992 0.977 1.000 0.0034

U-MI-FGSM 70.4% 0.989 0.008 0.658 5.343 0.300 0.534 97.801 0.979 0.972 1.000 0.0014
UAP 30.3% 0.757 0.089 0.745 7.220 0.300 0.456 155.794 0.607 0.855 0.884 0.0000

L2
DF 100.0% 0.543 0.405 0.359 1.808 0.492 0.927 13.994 0.138 0.066 0.999 0.0070
OM 100.0% 0.834 0.048 0.214 4.390 0.693 0.795 27.422 0.735 0.877 1.000 1.4738

TAs

L∞
ε=0.3

LLC 5.6% 0.683 0.062 0.320 4.459 0.300 0.519 56.790 0.624 0.782 0.982 0.0001
R+LLC 4.0% 0.651 0.090 0.534 4.843 0.300 0.437 85.311 0.547 0.763 0.974 0.0001
ILLC 59.4% 0.865 0.012 0.757 4.510 0.300 0.572 83.904 0.769 0.786 1.000 0.0004

T-MI-FGSM 86.4% 0.851 0.028 0.672 5.534 0.300 0.524 102.145 0.798 0.914 0.999 0.0014
L0 JSMA 76.4% 0.605 0.169 0.052 4.944 1.000 0.768 22.045 0.376 0.402 0.996 0.3756

L2

BLB 100.0% 0.677 0.200 0.373 1.778 0.536 0.910 14.145 0.460 0.026 0.981 21.6217

CW2 κ=0 99.7% 0.326 0.318 0.342 1.746 0.528 0.925 14.086 0.003 0.004 0.388 2.6302
κ=20 97.4% 0.995 0.001 0.393 3.570 0.842 0.772 39.359 0.995 1.000 1.000 2.5650

EAD EN 100% 0.361 0.322 0.200 1.717 0.620 0.933 9.928 0.025 0.036 0.766 1.3443
L1 100% 0.371 0.312 0.189 1.746 0.657 0.934 9.558 0.039 0.038 0.836 1.3622

TABLE XV
CLASSIFICATION ACCURACY OF COMPLETELY DEFENSES AGAINST ADVERSARIAL ATTACKS ON MNIST

D
at

as
et

s Attack
Original
Model

Defense-enhanced Models

Average
UA/
TA

Objec-
tive Attacks # of

AEs

Adversarial Training Gradient
Masking Input Transformation

RC
NAT EAT PAT DD IGR EIT RT PD TE

M
N

IS
T

UAs

L∞
ε=0.3

FGSM ε=0.3 304 0.0% 88.2% 88.8% 94.1% 60.2% 76.6% 61.5% 26.0% 11.2% 93.8% 8.6% 60.9%
ε=0.5 448 0.0% 28.8% 25.9% 26.3% 29.5% 42.6% 27.9% 15.2% 2.9% 20.5% 1.6% 22.1%

R+FGSM 342 0.0% 95.9% 95.6% 98.3% 78.4% 88.3% 77.8% 30.1% 17.3% 97.1% 19.3% 69.8%
BIM 756 0.0% 93.0% 92.5% 97.9% 71.6% 83.6% 65.7% 21.2% 7.0% 97.6% 9.4% 63.9%
PGD 824 0.0% 95.4% 93.8% 98.2% 74.5% 85.9% 67.7% 18.3% 10.6% 98.4% 11.5% 65.4%

U-MI-FGSM 704 0.0% 90.9% 90.8% 97.3% 64.4% 80.0% 57.0% 20.2% 8.7% 97.0% 9.8% 61.6%
UAP 303 0.0% 96.7% 95.4% 98.7% 71.3% 15.2% 12.9% 10.2% 18.2% 97.7% 42.2% 55.8%

L2
DF 1000 0.0% 99.6% 99.3% 99.3% 96.8% 98.9% 99.0% 68.9% 97.5% 99.3% 98.6% 95.7%
OM 1000 0.0% 88.6% 87.7% 93.7% 70.8% 90.5% 77.9% 26.3% 4.8% 94.8% 1.0% 63.6%

TAs

L∞
ε=0.3

LLC 56 0.0% 96.4% 98.2% 100.0% 73.2% 96.4% 75.0% 8.9% 23.2% 100.0% 7.1% 67.9%
R+LLC 40 0.0% 97.5% 95.0% 97.5% 92.5% 97.5% 92.5% 25.0% 30.0% 95.0% 32.5% 75.5%
ILLC 594 0.0% 98.7% 98.8% 99.0% 87.0% 95.1% 86.7% 25.4% 20.7% 98.5% 30.8% 74.1%

T-MI-FGSM 864 0.0% 98.4% 97.9% 99.2% 81.9% 90.5% 72.1% 26.6% 18.8% 99.1% 22.9% 70.7%
L0 JSMA 764 0.0% 78.5% 74.1% 79.7% 78.5% 86.0% 73.7% 38.6% 13.7% 73.0% 35.2% 63.1%

L2

BLB 1000 0.0% 99.7% 99.0% 99.3% 98.7% 99.1% 99.0% 66.3% 95.2% 98.6% 98.0% 95.3%

CW2 κ=0 997 0.0% 99.6% 99.0% 99.3% 98.2% 99.1% 98.2% 68.3% 96.4% 98.4% 98.4% 95.5%
κ=20 963 0.0% 79.7% 78.7% 85.2% 79.2% 90.7% 73.5% 19.8% 2.9% 81.1% 0.5% 59.1%

EAD EN 1000 0.0% 99.3% 98.4% 99.0% 98.4% 99.1% 98.5% 64.5% 96.6% 98.0% 98.3% 95.0%
L1 1000 0.0% 99.0% 97.8% 98.3% 98.1% 99.1% 97.9% 62.0% 94.9% 96.8% 98.3% 94.2%

Average 682.1 0.0% 90.7% 89.8% 92.6% 79.1% 85.0% 74.4% 33.8% 35.3% 91.3% 38.1% 71.0%

TABLE XVI
EVALUATION RESULTS OF DETECTION-ONLY DEFENSES AGAINST ALL ADVERSARIAL ATTACKS ON MNIST

D
at

as
et Attack # of

Examples

Detection-only Defenses
UA/
TA

Objec-
tive Attacks LID FS MagNet

TPR FPR AUC TPR FPR AUC TPR FPR AUC

M
N

IS
T

UAs

L∞
ε=0.3

FGSM 608 73.0% 3.6% 93.7% 96.1% 4.9% 99.1% 100.0% 6.6% 100.0%
R+FGSM 684 70.2% 4.1% 94.5% 97.7% 3.5% 99.5% 100.0% 3.5% 100.0%

BIM 1512 10.4% 4.2% 60.2% 92.7% 3.7% 98.7% 100.0% 3.7% 100.0%
PGD 1648 10.3% 4.1% 54.8% 96.1% 3.4% 99.5% 100.0% 3.6% 100.0%

U-MI-FGSM 1408 22.7% 4.1% 67.6% 90.5% 3.6% 98.4% 100.0% 3.7% 100.0%
UAP-i 606 87.8% 4.6% 97.5% 99.7% 5.0% 99.6% 100.0% 4.0% 100.0%

L2
DF 2000 84.1% 2.9% 98.0% 99.9% 4.0% 99.6% 80.5% 3.6% 94.8%
OM 2000 60.7% 3.0% 90.0% 94.0% 3.7% 99.1% 91.3% 3.7% 97.0%

TAs

L∞
ε=0.3

LLC 112 87.5% 3.6% 91.1% 100.0% 7.1% 99.7% 100.0% 1.8% 100.0%
R+LLC 80 95.0% 5.0% 85.3% 100.0% 2.5% 100.0% 100.0% 2.5% 100.0%
ILLC 1188 64.8% 5.9% 89.2% 99.7% 3.9% 100.0% 100.0% 5.2% 100.0%

T-MI-FGSM 1728 52.7% 3.5% 89.8% 99.3% 3.0% 99.9% 100.0% 4.5% 100.0%
L0 JSMA 2000 69.1% 5.6% 92.8% 100.0% 3.2% 99.6% 84.0% 5.0% 95.3%

L2

BLB 1528 77.5% 5.9% 94.7% 99.7% 4.8% 99.5% 98.2% 3.7% 99.1%
CW2 1994 93.9% 3.4% 99.2% 100.0% 3.0% 99.6% 80.5% 3.7% 94.5%

EAD (EN) 2000 92.0% 3.5% 98.5% 100.0% 3.5% 99.4% 75.8% 4.4% 92.3%
EAD (L1) 2000 93.1% 3.8% 98.9% 100.0% 4.9% 99.5% 73.7% 3.4% 92.1%

AVERAGE 1358.6 67.3% 4.2% 88.0% 98.0% 4.0% 99.4% 93.2% 3.9% 97.9%
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TABLE XVII
TRANSFERABILITY RATE OF ALL ADVERSARIAL ATTACKS ON MNIST

D
at

as
et

s Attack Original Model Model 1 Model 2 Model 3 Average
MR of 3
Models

Average
ACAC of
3 Models

UA/
TA

Objec-
tive Attacks # of

AEs MR ACAC MR ACAC MR ACAC MR ACAC

M
N

IS
T

UAs

L∞
ε=0.3

FGSM ε=0.3 304 100.0% 0.762 53.0% 0.692 46.4% 0.725 46.7% 0.725 48.7% 0.714
ε=0.5 448 100.0% 0.705 75.7% 0.584 65.2% 0.618 56.0% 0.592 65.6% 0.598

R+FGSM 342 100.0% 0.766 38.3% 0.703 28.7% 0.750 27.8% 0.716 31.6% 0.723
BIM 756 100.0% 0.995 66.4% 0.923 50.7% 0.899 39.3% 0.898 52.1% 0.907
PGD 824 100.0% 0.996 62.9% 0.914 48.8% 0.868 32.5% 0.877 48.1% 0.887

U-MI-FGSM 704 100.0% 0.989 69.6% 0.911 56.7% 0.861 46.3% 0.880 57.5% 0.884
UAP 303 100.0% 0.757 43.6% 0.590 38.3% 0.696 16.8% 0.613 32.9% 0.633

L2
DF 1000 100.0% 0.543 4.7% 0.780 2.3% 0.776 6.9% 0.765 4.6% 0.774
OM 1000 100.0% 0.834 44.8% 0.762 29.2% 0.769 32.2% 0.713 35.4% 0.748

TAs

L∞
ε=0.3

LLC 56 100.0% 0.683 10.7% 0.684 7.1% 0.665 1.8% 0.889 6.5% 0.746
R+LLC 40 100.0% 0.651 0.0% - 0.0% - 0.0% - 0.0% -
ILLC 594 100.0% 0.865 14.5% 0.774 7.4% 0.752 5.7% 0.729 9.2% 0.751

T-MI-FGSM 864 100.0% 0.851 27.8% 0.764 16.7% 0.745 14.5% 0.739 19.6% 0.749
L0 JSMA 764 100.0% 0.605 11.8% 0.824 8.1% 0.798 10.2% 0.770 10.0% 0.798

L2

BLB 1000 100.0% 0.677 1.2% 0.754 0.6% 0.728 1.0% 0.712 0.9% 0.731

CW2 κ=0 997 100.0% 0.326 0.5% 0.702 0.3% 0.661 0.8% 0.745 0.5% 0.703
κ=20 963 100.0% 0.995 57.2% 0.884 33.0% 0.874 26.9% 0.804 39.0% 0.854

EAD EN 1000 100.0% 0.361 1.4% 0.806 0.6% 0.785 0.7% 0.886 0.9% 0.826
L1 1000 100.0% 0.371 1.9% 0.753 0.6% 0.842 1.0% 0.850 1.2% 0.815

Average 682.1 100.0% 0.723 30.8% 0.767 23.2% 0.767 19.3% 0.772 24.4% 0.769

TABLE XVIII
CLASSIFICATION PERFORMANCE OF DIFFERENT ENSEMBLE METHODS ON MNIST

D
at

as
et Attack Original

Model

Ensemble Methods

UA/TA Objective Attacks # of AEs Completely-random Interclass-random Best-defense
Accuracy Confidence Accuracy Confidence Accuracy Confidence

M
N

IS
T

UAs

L∞
ε=0.3

FGSM ε=0.3 304 0.0% 62.6% 0.606 81.5% 0.803 93.8% 0.951
ε=0.5 448 0.0% 21.3% 0.544 26.0% 0.651 24.8% 0.709

R+FGSM 342 0.0% 75.7% 0.639 91.0% 0.844 97.1% 0.979
BIM 756 0.0% 54.5% 0.672 85.7% 0.840 97.0% 0.978
PGD 824 0.0% 56.7% 0.682 87.9% 0.847 97.7% 0.985

U-MI-FGSM 704 0.0% 50.4% 0.670 82.4% 0.828 96.5% 0.971
UAP 303 0.0% 76.7% 0.459 89.9% 0.764 98.7% 0.981

L2
DF 1000 0.0% 99.0% 0.864 99.4% 0.973 99.3% 0.994
OM 1000 0.0% 67.8% 0.618 84.5% 0.813 94.3% 0.932

TAs

L∞
ε=0.3

LLC 56 0.0% 78.0% 0.571 92.3% 0.834 100.0% 0.983
R+LLC 40 0.0% 87.5% 0.656 95.8% 0.892 100.0% 0.974
ILLC 594 0.0% 78.7% 0.626 95.4% 0.866 99.2% 0.989

T-MI-FGSM 864 0.0% 75.6% 0.610 93.6% 0.849 99.2% 0.987
L0 JSMA 764 0.0% 71.5% 0.635 79.1% 0.801 79.6% 0.874

L2

BLB 1000 0.0% 98.9% 0.855 97.2% 0.956 99.3% 0.990

CW2 κ=0 997 0.0% 99.1% 0.852 99.3% 0.972 99.5% 0.990
κ=20 963 0.0% 57.6% 0.640 79.6% 0.814 85.7% 0.900

EAD EN 1000 0.0% 99.0% 0.843 99.0% 0.967 99.2% 0.982
L1 1000 0.0% 98.9% 0.832 98.8% 0.961 98.6% 0.979

Average 682.1 0.0% 74.2% 0.678 87.3% 0.857 92.6% 0.954
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