
Problems and Opportunities in Training Deep Learning
Software Systems: An Analysis of Variance

Hung Viet Pham
University of Waterloo
Waterloo, ON, Canada
hvpham@uwaterloo.ca

Shangshu Qian
Purdue University

West Lafayette, IN, USA
shangshu@purdue.edu

Jiannan Wang
Purdue University

West Lafayette, IN, USA
wang4524@purdue.edu

Thibaud Lutellier
University of Waterloo
Waterloo, ON, Canada
tlutelli@uwaterloo.ca

Jonathan Rosenthal
Purdue University

West Lafayette, IN, USA
rosenth0@purdue.edu

Lin Tan
Purdue University

West Lafayette, IN, USA
lintan@purdue.edu

Yaoliang Yu
University of Waterloo
Waterloo, ON, Canada

yaoliang.yu@uwaterloo.ca

Nachiappan Nagappan
Microsoft Research
Redmond, WA, USA

nachin@microsoft.com

ABSTRACT
Deep learning (DL) training algorithms utilize nondeterminism to
improve models’ accuracy and training efficiency. Hence, multi-
ple identical training runs (e.g., identical training data, algorithm,
and network) produce different models with different accuracies
and training times. In addition to these algorithmic factors, DL li-
braries (e.g., TensorFlow and cuDNN) introduce additional variance
(referred to as implementation-level variance) due to parallelism,
optimization, and floating-point computation.

This work is the first to study the variance of DL systems and
the awareness of this variance among researchers and practition-
ers. Our experiments on three datasets with six popular networks
show large overall accuracy differences among identical training
runs. Even after excluding weak models, the accuracy difference
is 10.8%. In addition, implementation-level factors alone cause the
accuracy difference across identical training runs to be up to 2.9%,
the per-class accuracy difference to be up to 52.4%, and the training
time difference to be up to 145.3%. All core libraries (TensorFlow,
CNTK, and Theano) and low-level libraries (e.g., cuDNN) exhibit
implementation-level variance across all evaluated versions.

Our researcher and practitioner survey shows that 83.8% of the
901 participants are unaware of or unsure about any implementa-
tion-level variance. In addition, our literature survey shows that
only 19.5±3% of papers in recent top software engineering (SE),
artificial intelligence (AI), and systems conferences use multiple
identical training runs to quantify the variance of their DL ap-
proaches. This paper raises awareness of DL variance and directs
SE researchers to challenging tasks such as creating determinis-
tic DL implementations to facilitate debugging and improving the
reproducibility of DL software and results.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416545

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; • General and reference → Empirical studies.

KEYWORDS
deep learning, variance, nondeterminism

ACM Reference Format:
Hung Viet Pham, ShangshuQian, JiannanWang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems
and Opportunities in Training Deep Learning Software Systems: An Analy-
sis of Variance . In 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Aus-
tralia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3324884.
3416545

1 INTRODUCTION
Deep learning is widely used in many fields including autonomous
driving cars [19], diabetic blood glucose prediction [78], and soft-
ware engineering [18, 20, 21, 52, 63, 87, 114, 117, 119]. DL training
algorithms utilize nondeterminism to improve training efficiency
and model accuracy, e.g., using shuffled batch ordering of training
data to prevent overfitting and speed up training [49].

These nondeterminism-introducing (NI)-factors cause multiple
identical training runs, i.e., training runs with the same settings
(e.g., identical training data, identical algorithm, and identical net-
work), to produce different DL models with significantly different
accuracies and training times [57, 88, 101, 104].

For example, our experiments show that for 16 identical training
runs of a popular DL network, LeNet5 [65], the accuracy of the
resulting 16 models ranges from 8.6% to 99.0% —a large accuracy
difference of 90.4%. Four of these identical training runs resulted in
weak models (accuracy below 20%). Even if we exclude such models,
the accuracy difference is still up to 10.8% with LeNet1 between the
most accurate run (98.6%) and the least accurate run (87.8%).

One can eliminate the variance introduced by algorithmic NI-
factors (e.g., shuffled batch ordering) using fixed random seeds. For
example, with a fixed seed for batch ordering, multiple identical
training runs will have the same batch ordering. We refer to these
runs as fixed-seed identical training runs.

In addition to these algorithmic NI-factors, DL libraries (e.g.,
TensorFlow [13] and cuDNN [23]) introduce additional variance.

https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545

ASE ’20, September 21–25, 2020, Virtual Event, Australia H.V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, and Y. Yu, and N. Nagappan

For example, by default, core DL libraries (e.g., TensorFlow or Py-
Torch [82]) perform data preprocessing in parallel for speed, which
changes the order of training data, even if algorithmically the batch
order is fixed. In addition, core DL libraries, by default, leverage au-
totune to automatically benchmark several modes of operation (i.e.,
underlying algorithms for computations such as addition) for each
primitive cuDNN function (e.g., pooling and normalization) in its
first call. The fastest mode of operation is then used for that cuDNN
function in subsequent calls. Different identical runs sometimes
use different modes of operation, introducing variance.

Our experiments (Section 5.2) show that these implementation-
level NI-factors alone cause an overall accuracy difference of up
to 2.9%. Specifically, we train the popular WideResNet-28-10 [112]
(or WRN-28-10 for short) DL network for image classification 16
times using the same default training configuration (e.g., same
CIFAR100 [61] training data, batch size, optimizer, and learning rate
schedule), identical model selection criteria (i.e., selecting models
with the lowest loss on a validation set), the same DL libraries
(i.e., Keras 2.2.2, TensorFlow 1.14.0, CUDA 10.0, and cuDNN 7.6),
and identical hardware (i.e., the same NVIDIA RTX 2080Ti GPU),
while disabling all algorithmic NI-factors (i.e., using fixed random
seeds to ensure identical initial weights, identical batch ordering,
deterministic dropout layers, and deterministic data augmentation).
This process generates 16 models. Since all algorithmic NI-factors
are disabled, one may expect little variance across the 16 runs.
However, we found that the accuracies of these 16 models vary
between 77.3% and 80.2% (a 2.9% difference).

These implementation-level NI-factors and differences are often
characteristics and consequences of the DL software implementa-
tions, which create unique challenges for SE researchers and practi-
tioners (Section 8), while DL researchers have paid little attention
to implementation-level NI-factors (the focus is on theoretical anal-
yses of DL training [26, 27, 35, 58, 68, 90]).

To see whether such difference is known, we conduct a sur-
vey (Section 6), which surprisingly shows, that 83.8% of the 901
responded researchers and practitioners with DL experience are
unaware of (63.4%) or unsure about (20.4%) any implementation-
level variance! Of the 901 respondents, only 10.4% expect 2% or
more accuracy difference across fixed-seed identical training runs.

We also perform a literature survey of 454 papers randomly sam-
pled from recent top SE, AI, and systems conferences to understand
the awareness and practices of handling DL system variance in
research papers. Of 225 papers that train and evaluate DL systems,
only 19.5±3% use multiple identical training runs to quantify the
variance of their DL approaches.

The per-class accuracy exhibits a much larger difference among
the 16 fixed-seed identical training runs. For example, in the previ-
ously described WRN-28-10 runs, for the “camel" class (all images
with the ground-truth label of “camel”), the models’ accuracy varies
from 38.1% to 90.5% (a 52.4% difference).

In addition, there are large differences in convergence time. For
example, the time to convergence of the 16 fixed-seed identical
training runs of another popular network, ResNet56 [51], ranges
from 2,986 to 7,324 seconds (a one hour and 12 minutes difference)—
a 145.3% relative time difference. We also observe a discrepancy
between the empirical per-class accuracy and convergence time

and the corresponding estimates from the surveyed researchers
and practitioners.

Thus, it is important to study and quantify the variance of DL
systems, especially the implementation-level variance. On the one
hand, some practitioners, whose primary goal is to obtain the best
model, may be able to take advantage of the variance by running
multiple identical runs to achieve their goal.

On the other hand, SE, AI, and systems researchers who propose
new DL architectures and models that outperform existing ones
may need to execute multiple identical runs to ensure the validity
of their experiments.

For example, a recent research paper [64] proposed a new ap-
proach with a reported 0.8% accuracy improvement over the stan-
dard WRN-28-10. Our experiments show that this network’s ac-
curacy can vary by up to 2.9%. Therefore, the reported accuracy
improvement may not be statistically significant when considering
the aforementioned NI-factors in the training algorithm and the im-
plementation. In other words, if one runs the two approaches again,
the resulting mode of [64] may not outperform the WRN-28-10
model. At best, the comparison results still hold, but the current ex-
periments fail to provide evidence to demonstrate the improvement
given the possible variance.

There are existing theoretical analyses of DL training [26, 27,
35, 58, 68, 90] that study how well optimizers find good local op-
tima given algorithmic NI-factors. Such work fails to study the
nondeterminism in the underlying DL implementation.

To fill this gap, first, we systematically study and quantify the
accuracy and time variance of DL systems across identical runs
using 6 widely-used networks and 3 datasets. Second, we conduct a
survey to ascertain whether DL variance and their implications are
known to researchers and practitioners with DL experience. Third,
we conduct a literature review of the most recent editions of top
SE, AI, and systems conferences to understand the awareness and
practices of coping with DL variance in research papers.

In this paper, we make the following contributions:
♦ Finding 0: A list of implementation-level NI-factors (parallel
process, auto-selection of primitive operations, and scheduling
and floating-point precision) and algorithmic NI-factors (nonde-
terministic DL layers, weight initialization approach, data aug-
mentation approach, and batch ordering), and techniques that
control these NI-factors to remove or reduce variance (Section 2).
♦ A DL variance study of 4,838 hours (over 6.5 months) of GPU
time on 3 widely-used datasets (MNIST, CIFAR10, CIFAR100)
with 6 popular models (LeNet1, LetNet4, LetNet5, ResNet38,
ResNet56, and WideResNet-28-10) on three core DL libraries
(TensorFlow, CNTK, and Theano):
• Finding 1: The accuracy of models from 16 identical training
runs varies by as much as 10.8%, even after removing weak
models.

• Finding 2: With algorithmic NI-factors disabled, DL model
accuracy varies by as much as 2.9%—an accuracy difference
caused solely by implementation-level nondeterminism.

• Finding 3: Implementation-level NI-factors cause a per-class
accuracy difference up to 52.4%, while the per-class difference
is up to 100% with default settings (i.e., with algorithmic and
implementation-level nondeterminism).

Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance ASE ’20, September 21–25, 2020, Virtual Event, Australia

• Finding 4: Training time varies by as much as 145.3% (1 hour
and 12 minutes) among fixed-seed identical training runs,
while the training time difference is up to 4,014.8% with default
settings.

♦ A researcher and practitioner survey, with 901 valid replies,
reveals that:
• Finding 5: A large percentage of respondents are unaware of
(31.9%) or unsure about (21.8%) any variance of DL systems;
there is no correlation between DL experience and awareness
of DL variance.

• Finding 6: Even more researchers and practitioners (83.8%)
are unaware or uncertain of implementation-level nondeter-
minism in DL systems.

• Finding 7: Only 10.4% of respondents expect 2% or more
accuracy difference across fixed-seed identical training runs.

• Finding 8: Most (77.7%) participants estimate the convergence
time differences to be less than 10% across identical training
runs, and the majority of respondents (84.5%) estimates a sim-
ilar 10% or less convergence time difference among fixed-seed
identical training runs.

♦ Finding 9: A literature survey of a random sample of 454 papers
from the most recent editions of top SE (ICSE [7], FSE [4], and
ASE [1]), AI (NeurIPS/NIPS [9], ICLR [11], ICML [6], CVPR [3],
and ICCV [5]), and systems (ASPLOS [2], SOSP [10], and ML-
Sys [8]) conferences, shows that 225 papers train and evaluate DL
systems, only 19.5±3% of which use multiple identical training
runs to evaluate their approaches.
♦ Implications and suggestions for researchers and practition-
ers, and raising awareness of DL variance (Section 8).

Code and data are available in a GitHub repository1.

2 NONDETERMINISM-INTRODUCING
(NI)-FACTORS

Many factors affect DL systems’ results and training time. The
first set of factors is the input to a system. Such input includes the
training data and hyper-parameters (e.g., number of layers, dropout
rate, optimizer, learning rate, batch size, and data augmentation
method and settings). It is expected that models with different
inputs perform differently, and there is a flurry of work on how to
select the best input (e.g., hyper-parameter tuning) [17, 54, 111].

However, several factors (e.g., shuffled batch ordering) indepen-
dent of the system’s input affect the training and accuracy of the
final models. We call these factors NI-factors. We divide NI-factors
into two categories: (1) algorithmic NI-factors, which are intro-
duced to improve the effectiveness of the training algorithm, and
(2) implementation-level NI-factors, which are the byproduct of
optimizations to improve DL implementations’ efficiency.

2.1 Definitions
In this study, we define a DL system as the composition of a DL
algorithm and a DL implementation. DL algorithm is the theory
portion of DL and consists of model definition, hyper-parameters,
and theoretical training process. DL implementation consists of

1https://github.com/lin-tan/dl-variance

high-level DL libraries (e.g., Keras), core DL libraries (e.g., Tensor-
Flow and PyTorch), low-level computation libraries (e.g., cuDNN and
CUDA), and hardware (e.g., GPU, CPU, and TPU). The DL training
process spans across the DL algorithm and DL implementation.

2.2 Algorithmic NI-factors
The most common algorithmic NI-factors include nondeterministic
DL layers (e.g., dropout layer), weight initialization, data augmen-
tation, and batch ordering.
Nondeterministic DL Layers: DL architectures can contain non-
deterministic layers. For example, dropout layers [99] are commonly
used to prevent overfitting. They randomly set parts of the input
tensor to zero during training and guide each neuron to be trained
with different portions of the training data. Dropout tensors are cho-
sen randomly on-the-fly during training, whichmeans two identical
runs could produce two different models with different accuracies
and different training times.
Weight Initialization: Weight initialization [42, 50, 66, 90] is an
important step in DL training [101, 104]. Random weight initial-
ization samples the initial DL model weights from a predefined
distribution. Goodfellow et al. [45] state that random initialization
“breaks the symmetry” across all the weight tensors. This process
helps similarly structured neurons learn different functions instead
of repeating each other. Thus, they learn different aspects of the
training data and help to increase the model’s generalization. How-
ever, different initial weights may result in convergence to different
local minima [36, 40, 67]. Therefore, random initialization can lead
to variance in model accuracy across identical runs.
Data Augmentation: DL training algorithms also utilize the ran-
domness in data augmentation to improve their effectiveness (i.e.,
produce more accurate models). Data augmentation [96] is an inex-
pensive method that randomly transforms the input to increase the
input’s diversity. It has been shown to improve the generalization
of the final trained model. Randomly transforming the training data
will result in nondeterministic identical training runs.
Batch Ordering: Random batch ordering also improves the gen-
eralization of DL models. It breaks up the order of the training
data to prevent the model from quickly overfitting to a particular
label [66]. Reordering training batches at each epoch results in
nondeterministic identical training runs.

2.3 Implementation-level NI-factors
Implementation-level NI-factors are caused by libraries (e.g., Tensor-
Flow, CUDA, and cuDNN). The most common implementation-level
NI-factors are parallel computation, nondeterministic primitive op-
erations, and rounding errors due to scheduling.
Parallel processes: Core DL libraries (e.g., TensorFlow and Py-
torch) provide options to use multiple processes to improve the
efficiency of DL systems. For example, the core libraries, by default,
run the data preprocessing task in parallel to prepare the training
data faster. However, due to the random completion order of par-
allel tasks, the order of training data may change and impact the
optimization path of the training process, resulting in variance even
if data preprocessing itself is deterministic.

https://github.com/lin-tan/dl-variance

ASE ’20, September 21–25, 2020, Virtual Event, Australia H.V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, and Y. Yu, and N. Nagappan

Figure 1: Overview of the experimental method

Auto-selection of primitive operations: Core DL libraries im-
plement DL algorithms by leveraging the GPU-optimized DL primi-
tives provided by low-level libraries (e.g., cuDNN and CUDA).When
used with NVIDIA GPUs, cuDNN provides hardware-accelerated
primitives for common DL operations such as forward and back-
ward convolution, pooling, normalization, and activation layers.
cuDNN provides several modes of operation (i.e., different compu-
tational algorithms) for primitive functions.

By default, core DL libraries enable autotune, which automat-
ically benchmarks several modes of operation for each primitive
cuDNN function in its first call. The fastest mode of operation is
then used for that cuDNN function in subsequent calls. The exact
mode of operation for each primitive used in each run changes de-
pending on the dynamic benchmark result. Different identical runs
sometimes use different modes of operation, introducing variance.
Furthermore, some modes of operation are nondeterministic due
to rounding errors introduced by scheduling (see below).
Scheduling and floating-point precision: GPU programming
uses warp as a unit of computation. A warp consists of 32 parallel
threads with concurrent memory access. Due to the limited preci-
sion (32-bits) of DL models, rounding errors are introduced at every
step of floating-point calculation. In the GPU model, concurrent
accesses to a single memory address must be serialized to prevent
race conditions with no guaranteed order of access. Therefore, the
rounding error introduced in each warp may vary across fixed-seed
identical training runs due to the different accessing orders.

For example, matrix reduction operations such as atomicAdd

(used in depthwise convolution layers) are affected by the varying
serialization order. Since floating-point operations are not associa-
tive due to rounding errors [43], varying orders of additions may
produce nondeterministic output (A + B +C , B +C +A).

2.4 Controlling NI-factors for determinism
Removing algorithmic NI-factors enables us to study the nondeter-
minism introduced by implementation-level NI-factors. In addition,
deterministic training may be desirable for debugging and other
purposes. Thus, we identify techniques that control algorithmic
and implementation-level NI-factors to remove or reduce variance.
Controlling algorithmic NI-factors: All algorithmic NI-factors
are controlled by pseudo-random number generators. Thus, we can
control these NI-factors by fixing the random seeds at the beginning
of each run to achieve algorithmic determinism across identical runs
while still maintaining the pseudo-random characteristic within a
single run. We defined this as fixed-seed identical training runs.

Controlling implementation-levelNI-factors:To control these
NI-factors, we need to take several steps. First, the DL system should
not use multiple processes that cannot guarantee data order. For
example, using more than one worker in the data generator to
feed training data would shuffle the batch ordering even with fixed
random seeds.

Second, the autotune mechanism should choose deterministic
implementations of primitive operations only. For example, in Ten-
sorFlow 1.14.0, if the environment flag TF_CUDNN_DETERMINISTIC is
set to 1, the autotune mechanism will not consider the nondeter-
ministic modes for cuDNN primitive functions.

Third, since some operations (e.g., atomicAdd) are nondetermin-
istic when used on a GPU due to nondeterministic serialization,
the input of these operations should be serialized after all parallel
executions (i.e., to ensure a deterministic ordering of input). Then,
the operations should be executed on a single CPU thread.

Finally, one solution to achieve complete deterministic training
is forcing the DL system to run completely in a serial manner (i.e.,
running on a single CPU thread). However, this option prevents DL
systems to utilize the hardware efficiently and may be unrealistic,
as many models would take months or years to train on a single
CPU thread. As future work, deterministic multithreading [32] may
be promising for more realistic deterministic DL systems.

A major goal of this paper is to quantify the variance introduced
by implementation-level NI-factors.

3 EXPERIMENTAL METHOD
First, we extract the default input (i.e., training data, hyper-parame-
ters, and optimizers) of a DL system from existing work (Section 4).
Figure 1 shows an overview of our experimental method. We gen-
erate different environments that combine different versions of DL
libraries (e.g., high-level libraries, core libraries, and low-level li-
braries). For all environments, the hardware is the same (details in
Section 4). For example, one such environment includes Keras 2.2.2,
TensorFlow 1.14.0, cuDNN 7.6, and CUDA 10.0. Each network is
coupled with its default input. For example, the CIFAR 100 dataset
(including training, validation, and test data) is used to train the
WRN-28-10 network with stochastic gradient descent (SGD) opti-
mizer in 50 epochs. Table 1 shows the corresponding default input
for each network. Each network (including its default input) com-
bined with one nondeterminism setting (details below) is defined as a
set of setting. For example, one set of settings that we use is training
the WRN-28-10 network with all algorithmic NI-factors disabled
(i.e., fixed-seed nondeterminism setting). For each environment and

Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance ASE ’20, September 21–25, 2020, Virtual Event, Australia

setting combination, we perform an experimental set and measure
the accuracy and time variance across n identical training runs.

To ensure a valid study, we address one main challenge: to mea-
sure realistic variance, the experiments need to reflect the real usage
of DL systems. We pick training from-scratch as our scenario for
the training phase because it is a common and fundamental training
scenario [14, 51, 94, 98, 103, 112, 122], i.e., we train a new DL model
from the beginning, starting from randomly initialized weights.

In addition, we focus on studying the variance of models’ overall
accuracy, per-class accuracy, and training time, as these are common
metrics that DL researchers and practitioners use, and there have
been many techniques [14, 22, 38, 45, 103, 118] proposed to improve
on these metrics.

Further, to make sure the accuracy and time that we observe
are valid, we check that our results are equivalent to the ones
reported in the original papers. Training inputs (e.g., training data,
prepossessing methods, and optimizer) are chosen to match, as
closely as possible, those reported or used in the authors’ code.
While a complete reproduction is often impossible, we reproduce
previous work as faithfully as possible by using reported settings
and ensuring at least one of our runs can reach almost identical
accuracy to that of the original work.

Finally, we perform two statistical tests (Levene’s test for vari-
ance and Mann Whitney U-test for mean) to ensure that we draw
statistically significant conclusions.

3.1 Experimental sets of identical training runs
The training phase is an iterative process and after each iteration
(i.e., epoch) a checkpoint of the model is stored. After the training
finishes, the best checkpoint is selected based on a finalmodel selec-
tion criterion. We focus on two common (77.5% of the respondents
in our survey use one of these criteria) model selection criteria:
• Best-loss selection criterion: The final model is the check-
point with the best (i.e., lowest) validation loss.

• Best-accuracy selection criterion:The finalmodel is the check-
point with the best (i.e., highest) validation accuracy.

Validation loss and accuracy are calculated on the validation set
(i.e., unseen data, different from the training data, and used to tune
the model). We report the test accuracy of the selected best model
which is calculated on the test data (i.e., unseen data, different from
the training and validation data).

In practice, the training runs would end if the selection metric
(i.e., validation loss or accuracy) did not improve after a set number
of epochs (i.e., patience). In this study, we instead run the training to
a maximum number of epochs while storing the model checkpoints.
Once the training is done, we select themodel based on the selection
criterion and then compute the training time as if the training had
stopped at the best checkpoint. This is an estimation of training time
without running a separate set of experiments for each criterion.

We define identical training runs as training runs executed with
the same environment (i.e., hardware and DL libraries), the same
network architecture, and the same inputs (i.e., training data, hyper-
parameters, and optimizers). Each identical training run is followed
by an inference run on the test data to compute the model accuracy.

An experimental set is a group of identical training runs.Wemake
sure to avoid measurement bias [79] as much as we could by using

the same machine along with Docker environments that are built
from the same base image. The only changes across experimental
sets are the DL library combinations and the set of settings (i.e., the
nondeterminism-level, the network, and its default input). In each
experimental set, we perform n = 16 runs .

3.2 Nondeterminism-level settings
We perform two categories of experiments with different non-
determinism-levels: the default and fixed-seed settings.

Default identical training runs are experiments that do not en-
force determinism (i.e., none of the NI-factors are controlled). These
are identical training runs with the default input (training data and
hyper-parameters).

Fixed-seed identical training runs are experiments for which al-
gorithmic NI-factors are disabled, i.e., we use the same random
generator and the same seed. For example, with the TensorFlow
core library, we set the global Python random seed, Python hash
seed, Numpy random seed, and the TensorFlow random seed to be
identical. Initializing all random number generators with identical
seed disables all algorithmic NI-factors (i.e., dropout layers, initial
weights, data augmentation, and batch ordering).

3.3 Metrics and measurements
To measure the variance across identical training runs, we measure
a model’s overall and per-class accuracy on the test set. The overall
accuracymeasures the portion of correct classifications that a model
makes on test samples. The per-class accuracy splits the overall
accuracy into separate classes based on the ground-truth class
labels (i.e., the accuracy of the model for each class). For example,
the MNIST dataset has 10 classes, so an MNIST model would have
10 per-class accuracy values (one for each digit). For all identical
training runs, we measure the total training time as well as the
number of epochs until convergence (i.e., until the checkpoints
specified by the selection criterion). For each experimental set, the
maximum difference shows themost extreme gap of model accuracy
and training time between the best and the worst runs.

3.4 Statistical tests
Levene’s test is a statistical test to assess the equality of variance
of two samples. Specifically, when testing accuracy variance, the
null hypothesis is that the accuracy variance of set A is equal to
the accuracy variance of set B. If we find that p-value < 0.05 then
we can confirm with 95% confidence the accuracy variance of set
A is different from set B. Thus, if the accuracy variance of set A is
smaller, then runs in set A are more stable than in B.
Mann Whitney U-test is a statistical test to assess the similarity
of sample distributions. We run the U-test instead of the T-test
because the U-test does not assume normality while the T-test
does. For example, when comparing two sets of runs (A and B),
the null hypothesis is that the accuracies of set A are similar to set
B. If we find that p-value < 0.05, then we can confirm with 95%
confidence that our alternative hypothesis is true which means set
A has statistically different accuracies than set B. We compute the
effect size as the Cohen’s d [28] to check if the difference has a
meaningful effect (d = 0: no effect and d = 2: huge effect [89]).

ASE ’20, September 21–25, 2020, Virtual Event, Australia H.V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, and Y. Yu, and N. Nagappan

Table 1: Datasets, networks, and training settings

Dataset
#samples Network Settings

Train Val Test Name #parameters #epochs Optimizer

MNIST 60,000 7,500 2,500
LeNet1 7,206

50 SGDLeNet4 69,362
LeNet5 107,786

CIFAR10 50,000 7,500 2,500
ResNet38 565,386

200 Adam
ResNet56 857,706

CIFAR100 50,000 7,500 2,500 WRN-28-10 36,536,884 200 SGD

4 EXPERIMENTAL SETTINGS
Datasets and models: We perform our experiments using three
popular datasets: MNIST [65], CIFAR10 [61], and CIFAR100 [61].
We choose image classification architectures as they are often used
as test subjects in recent SE papers that test [41, 71, 73, 85, 100,
105, 106, 109, 115, 120], verify [46, 83], and improve [39, 56, 74, 110,
113, 116] DL models and libraries. Table 1 shows each dataset with
the corresponding numbers of instances in each subset (training,
validation, and test). The training set is used to train the model.
Following common practice [14, 24, 45, 51, 62, 97, 102], we use
the validation set to select the best model. The test set is used to
evaluate the final model.

We choose to experiment on LeNet [65], ResNet [51], andWideRes-
Net [112] architectures as they are popular networks for image
classification. In our literature review, of the 225 relevant papers,
64% of papers use or compare to one of these architectures. Table 1
also shows the number of trainable parameters for each network.
Our networks are diverse in size, from 7,206 (LeNet1) to 36,536,884
parameters (WRN-28-10).

We reproduce previous work as faithfully as possible by using
networks and settings recorded by previous work and ensuring
some of our runs have a similar (within 1%) accuracy as that in the
original work.We also use (when available) the original implementa-
tion of the approach from the author and the Keras implementation
(if available) to reduce the risk of introducing new bugs.

We list the training configurations used in table 1. To ensure that
the model will converge (i.e., training loss stops improving) within
the maximum number of epochs (Table 1), we empirically choose a
maximum number of epochs larger than the number of epochs to
convergence using both selection criteria.

We cannot use networks from prior work [84, 85, 105] since they
only provide pre-trained models and do not provide enough details
for us to reproduce the training runs.
DL libraries: We use Keras version 2.2.2 [25] as our high-level
library since it provides us with the ability to transparently switch
between three DL core libraries (TensorFlow [13], CNTK [16], and
Theano [91]). This ensures that the comparison across core libraries
is fair and the least affected by our code. We perform our experi-
ments with the official TensorFlow versions (including the latest)
(1.10, 1.12, and 1.14), CNTK version (2.7), and Theano version (1.0.4).
We pair each version of the core libraries with the officially sup-
ported low-level cuDNN and CUDA versions. For example, Ten-
sorFlow 1.12 supports cuDNN 7.3 to 7.6 coupled with CUDA 9.0,
while TensorFlow 1.14 supports only cuDNN 7.4 to 7.6 coupled
with CUDA 10.0. Since it is not practical to perform experiments

Table 2: Maximum differences of overall and per-class accu-
racy among default and fixed-seed identical training runs

Setting Network
Overall(%) Per-class(%)

Diff SDev (SDevCI) Diff SDev (SDevCI)

De
fa

ul
t

LeNet1 10.8 2.6 (2.0-3.8) 99.6 24.5 (19.0-35.2)
LeNet4 10.6 2.6 (2.0-3.7) 100.0 24.7 (19.1-35.5)
LeNet5 90.4 38.7 (30.0-55.6)* 100.0 44.5 (34.4-63.9)
ResNet38 1.9 0.5 (0.4-0.7) 11.7 2.8 (2.2-4.1)
ResNet56 2.1 0.6 (0.4-0.8) 11.9 2.8 (2.2-4.0)
WRN-28-10 2.8 0.8 (0.6-1.1) 50.0 13.3 (10.3-19.1)

Fi
xe

d-
se

ed

LeNet1 0.1 <0.1 (<0.1) 0.8 0.3 (0.2-0.4)
LeNet4 0.5 0.1 (0.1-0.2) 1.9 0.6 (0.5-0.9)
LeNet5 1.2 0.3 (0.2-0.4) 4.8 1.3 (1.0-1.9)
ResNet38 2.7 0.6 (0.5-0.8) 12.2 3.3 (2.6-4.8)
ResNet56 1.9 0.5 (0.4-0.7) 10.6 2.3 (1.8-3.3)
WRN-28-10 2.9 0.7 (0.6-1.0) 52.4 16.3 (12.6-23.4)

* 4/16 runs produce weak models that have lower than 20% accuracy

LeNet1 LeNet4 LeNet5

20.0%

40.0%

60.0%

80.0%

100.0%

ResNet38 ResNet56
90.0%

91.0%

92.0%

93.0%

WRN-28-10

79.0%

80.0%

81.0%

Figure 2: Boxplots of the overall accuracy for default identi-
cal runs with the largest overall accuracy difference

on all library combinations, we use 11 library combinations for
TensorFlow, one combination each for CNTK and Theano.
Infrastructure:We carry out all experiments on a machine with
56 cores, 384GB of RAM, and RTX 2080Ti graphic cards each with
11GB memory. To accommodate multiple combinations of libraries,
we use Anaconda (4.4.10) with Python (3.6) and Docker (19.03).

5 RESULTS AND FINDINGS
We perform 2,304 identical training runs (144 experimental sets
with 16 runs each) of six networks on three datasets, with two levels
of nondeterminism, using three core libraries (TensorFlow, CNTK,
and Theano) which is 4,838 hours (over 6.5 months) of GPU time.

5.1 RQ1: How much accuracy variance do
NI-factors introduce?

To investigate the variance caused by NI-factors, we run 16 default
identical training runs for each of the 66 experimental sets (i.e.,
combinations of 6 networks and 11 environments). Recall that
default identical training runs are defined as training runs with the
same default inputs where no NI-factors are disabled (Section 3.1).

To estimate the extreme case, we compute the maximum differ-
ence of accuracy (overall and per-class) between the least accurate
and the most accurate default identical training runs of an experi-
mental set while the standard deviation estimates the average case.

Table 2 (Default) shows results for RQ1. Columns Diff show the
maximum differences of accuracy while columns SDev and (SDe-
vCI) shows the standard deviation of accuracy among 16 identical
training runs and corresponding confidence interval (i.e., with 90%
confidence, the confidence interval would contain the population
standard deviation). We only show the larger accuracy differences
when using either selection criterion (best-loss or best-accuracy)
as the results are similar between the criteria. Figure 2 shows the

Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance ASE ’20, September 21–25, 2020, Virtual Event, Australia

boxplots of the overall accuracy of each network. The triangles
represent the mean accuracy and the orange line is the median.
Dots outside of the whiskers are outliers.
Across default identical training runs, the accuracy difference is
as big as 10.8%, even after removing weak models. (Finding 1).
Specifically, in the LeNet5 default training experimental set (with

TensorFlow 1.14.0, CUDA 10.0, cuDNN 7.5, and loss selection crite-
rion), the most and least accurate runs have an overall accuracy of
99.0% and 8.6% respectively (a 90.4% difference). The worst model’s
accuracy is lower than random guesses (i.e., 10% because the MNIST
dataset has 10 classes). This large accuracy difference is caused by
the random initialization of the weights [101, 104]. Particularly, four
runs do not improve much after training—with the final models’
accuracies being 8.6%, 9.9%, 10.6%, and 19.7% (the outliers shown as
circles in Figure 2). While the four runs produce weak models, they
are faithful reproductions of training with widely-used networks
and algorithms using realistic data and settings. The fact that 4
out of 16 runs fail to improve significantly, shows the importance
of reporting the variance between multiple identical training runs
so that the DL approaches can be evaluated on not just their best
accuracy, but also on how stable the training process is.

If we exclude networks with such weak models, we still see
an accuracy difference up to 10.8% with LeNet1 (the difference
between 87.8% and 98.6%). For WRN-28-10, the largest difference
is 2.8% (between 78.2% and 81.0%) respectively. Although these
differences may seem small, researchers [64] report improvements
of 0.8% when comparing against WRN-28-10 without accounting
for NI-factors. At best, the comparison conclusions still hold, but
the papers fail to provide evidence for that.

The per-class accuracy differences are even larger compared to
the overall accuracy differences (Table 2, column Default: Overall
versus column Default: Per-Class). On the least accurate run of
LeNet5, the trained model fails completely on a single class (i.e., the
prediction accuracy for the class digit “0” is 0%), while, for other
runs, the highest prediction accuracy for the same class is 100%.
Digit “0” has 261 test images (all classes have similar numbers) so
such single-class failures are not due to insufficient instances or
bias distribution of that class. A similar single-class failure happens
for LeNet1 and LeNet4 training runs. The standard deviation is
smaller for these networks (24.5% and 24.7% comparing to 44.5%)
because only one run completely fails.

As another example, WRN-28-10 default identical training runs
(using library combination TensorFlow 1.12.0, CUDA 9.0, cuDNN
7.6, and best-accuracy selection criteria) incur a maximum overall
accuracy difference of 2.8%. With the same settings, the per-class
accuracy difference is 50.0% (dropping from 72.7% to 22.7%) for
the class “bee” (with 22 test samples). Per-class accuracy variance
can be problematic for applications where the accuracy of specific
classes is critical. For example, the accuracy variance of the pedes-
trian class of a self-driving car’s object classification system could
vary pedestrian prediction reliability. This, in turn, could endanger
pedestrians, even if the overall variance of the model is small.

NI-factors cause a complete single-class failure, where the
biggest per-class accuracy difference is 100% with a standard
deviation of 44.5% (Finding 3(a)).

LeNet1 LeNet4 LeNet5

98.0%

98.5%

99.0%

ResNet38 ResNet56

89.0%

90.0%

91.0%

92.0%

WRN-28-10

78.0%

79.0%

80.0%

Figure 3: Boxplots of the overall accuracy for fixed-seed
identical runs with the largest overall accuracy difference

5.2 RQ2: How much accuracy variance do
implementation-level NI-factors cause?

Accuracy variance: We analyze nondeterminism introduced by
implementation-level NI-factors by performing 66 experimental
sets (i.e., combinations of 6 networks with 11 environments) of
fixed-seed identical training runs (each with 16 runs). Recall that
fixed-seed identical training runs are default identical training runs
with algorithmic NI-factors disabled using fixed random seed ini-
tialization (Section 3.2).

Table 2 (Fixed-seed) shows the largest accuracy differences of
the overall and per-class accuracy of all models (for any library
combinations and selection criteria) with disabled algorithmic NI-
factors (i.e., among fixed-seed identical training runs).

Implementation-level NI-factors cause accuracy differences as
large as 2.9% (Finding 2), while per-class accuracy differences
are up to 52.4% (Finding 3 (b)).

Among the fixed-seed identical training runs of WRN-28-10
(with TensorFlow 1.14.0, CUDA 10, cuDNN 7.6, and loss selection
criterion), the most and the least accurate runs have an overall
accuracy of 80.2% and 77.3% respectively. In the same experimental
set, the implementation-level NI-factors cause a per-class accuracy
difference of 52.4% (the “camel” class–with 21 test samples– has
90.5% and 38.1% accuracies in the most and least accurate run). All
other classes have similar numbers of test samples so the large
per-class accuracy difference is not due to insufficient instances or
bias distribution classes.

The lack of complete failure caused by the random weight ini-
tialization (an algorithmic NI-factors) in LeNet training (Figure 3)
indicates that training is more stable without algorithmic NI-factors.

When comparing the results of setting Default and Fixed-seed in
Table 2, LeNet and ResNet56 have smaller overall and per-class ac-
curacy differences among default identical training runs. While for
ResNet38 and WRN-28-10, the accuracy differences among fixed-
seed identical training runs are smaller. Levene’s test cannot statis-
tically confirm the significance (p-value > 0.05) of these differences
in variance for all networks except for LeNet5 (where there are
complete failures in identical training runs with default setting).

Table 2 (Fixed-seed) shows that except for ResNet38, the more
complex a network is (i.e., more trainable parameters), the larger
the accuracy (overall and per-class) variance exists across fixed-
seed identical training runs. For more complex networks, the error
introduced by nondeterminism might propagate further.

To demonstrate the importance of performing identical training
runs when comparing different DL approaches, we consider a sce-
nario where ResNet56 is a baseline approach to the CIFAR10 image
classification problem and ResNet38 is the proposed improvement.

ASE ’20, September 21–25, 2020, Virtual Event, Australia H.V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, and Y. Yu, and N. Nagappan

LeNet1 LeNet4 LeNet598.0%

98.2%

98.4%

98.6%

98.8%

ResNet38 ResNet56

90.0%

91.0%

92.0%

WRN-28-10
72.0%

74.0%

76.0%

78.0%

80.0%
TensorFlow CNTK Theano

Figure 4: Boxplots of the overall accuracy of fixed-seed iden-
tical training runs with different core libraries

LeNet1 LeNet4 LeNet5
0.0%

0.5%

1.0%

ResNet38 ResNet56

1.5%

2.0%

2.5%

WRN-28-10

2.0%

2.5%

Figure 5: Boxplots of the overall accuracy difference of fixed-
seed identical training runswith 11 low-level library version
combinations for each network

Among 16 fixed-seed identical training runs, ResNet56 averages
91.2% in test accuracy while ResNet38 averages 90.3%. The U-test
confirms (with p-value < 0.01) that ResNet56 has 0.9% higher test
accuracy than ResNet38 with an effect size (Cohen’s d) of 1.7 (very
large effect). Hence, there is no improvement from the proposed
technique (ResNet38) over the baseline (ResNet56). However, if
each approach only runs once, in the most extreme case, ResNet56
accuracy is reported with its worse run (90.4%) and ResNet38 with
its best run (91.4%), the researchers might have come to an invalid
conclusion that ResNet38 has 1% higher accuracy than ResNet56. Re-
searchers and practitioners should be aware of DL system variance,
even with only implementation-level NI-factors, so they would per-
form multiple identical training runs when comparing approaches.
Different core libraries:We investigate if switching core libraries
leads to different accuracy variance among fixed-seed identical
training runs. Since it is prohibitively expensive to run all combina-
tions of core and low-level library versions (our experiments’ GPU
time are already over 6.5 months), we compare the latest versions
of core and low-level libraries at the time of the experiment (i.e.,
in addition, we run 12 more experiment sets – combinations of 6
models with 2 environments).

Figure 4 shows the boxplots of the overall accuracy of fixed-seed
identical training runs for the experimental set of each network
with the best-loss selection criterion across three different core
libraries. The accuracy variance is similar across different core
libraries. For example, for ResNet56 the accuracy difference with
CNTK is 1.5% (between 91.8% and 90.3%) and 1.9% with TensorFlow.
All core libraries are affected similarly by implementation-level
NI-factors, as Levene’s test cannot reject the null hypothesis that
each core library has a different accuracy variance (p-value > 0.1).
Different low-level libraries versions: We analyze the over-
all accuracy differences of the 11 low-level library combinations
(cuDNN and CUDA) with TensorFlow to see if there is still vari-
ance when switching versions of the low-level libraries. Figure 5
shows the boxplots of the overall accuracy differences of fixed-
seed identical training runs when training each network with each
of the 11 library combinations. All training runs are affected by

Table 3: Running time to convergence differences among de-
fault and fixed seed identical training runs

Setting Network
TimeLoss (seconds) TimeAcc (seconds)

Diff RelDiff RelSDev Diff RelDiff RelSDev

De
fa
ul
t

LeNet1 27 24.5% 6.5% 41 47.2% 8.5%
LeNet4 22 17.4% 4.7% 25 19.9% 4.0%
LeNet5 155 3,940.7%* 54.2% 158 4,014.8%* 55.1%
ResNet38 434 21.4% 5.3% 2,953 133.2% 18.7%
ResNet56 699 23.9% 6.0% 3,813 116.5% 17.7%
WRN-28-10 2,333 12.9% 3.2% 6,316 46.0% 8.8%

Fi
xe
d-
se
ed

LeNet1 17 14.3% 3.8% 18 14.4% 3.8%
LeNet4 17 13.3% 3.6% 25 20.1% 6.2%
LeNet5 31 25.8% 5.6% 37 30.0% 6.0%
ResNet38 415 20.4% 4.4% 2,782 115.5% 15.9%
ResNet56 467 16.4% 3.6% 4,338 145.3% 22.5%
WRN-28-10 2,197 12.2% 2.9% 5,625 38.3% 10.1%

* 3/16 runs stuck at the first epoch

implementation-level NI-factors, independently from the low-level
libraries used. For example, with WRN-28-10, the largest overall
accuracy difference is 2.9% (reported in Table 2). On average, across
11 experimental sets, the accuracy difference for this network is
over 2% while the smallest accuracy difference is 1.6%.

5.3 RQ3: How much training-time variance do
NI-factors introduce?

We study the variance in overall training time to convergence of
default identical training runs and fixed-seed identical training
runs which is often the primary variance that researchers and
practitioners care about. We measure training time to convergence
with respect to best-loss and best-accuracy selection criteria.

Table 3 shows the analysis of the running time to convergence for
default identical training runs and fixed-seed identical training runs.
TimeLoss and TimeAcc denote the training time using two popular
model selection criteria—best-loss and best-accuracy, respectively.
For each selection criterion, the table shows the time difference
between the slowest and the fastest runs (columns Diff). Since
the running time is very different across networks, we compute
the relative time difference (columns RelDiff) —the ratio of the
time difference over the running time of the fastest. To give some
indication of an average case, columns RelSDev show the relative
standard deviation (i.e., coefficient of variation [37]) of the 16 runs.

Among default identical training runs, LeNet5 has the largest
relative training time difference of 4,014.9% using the best-accuracy
selection criterion. As discussed in RQ1, three runs fail to improve
after the first epoch (3.9 seconds for the fastest), creating such a
large time difference. However, since only three runs got stuck at
the first epoch, the relative standard deviation is 55.1%.

The largest training time difference among default identical train-
ing runs is 6,316 seconds (1 hour and 40minutes) for theWRN-28-10
network with the best-accuracy selection criterion (relative training
time difference of 46.0%). Given how expensive DL training can be,
46.0% of training time difference could mean days or longer.

Among fixed-seed identical training runs, ResNet56 incurs the
largest relative training time difference (145.3%) when using the
best-accuracy selection criterion. This means that the deviation
caused by random computation errors can lead to significantly
different optimization paths, hence different convergence time.

Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance ASE ’20, September 21–25, 2020, Virtual Event, Australia

Finding 4: Training time varies by as much as 145.3% (1 hour
and 12 minutes) among fixed-seed identical training runs, while
the training time difference is up to 4,014.8% with default iden-
tical training runs.

6 RESEARCHER AND PRACTITIONER
SURVEY

We conduct a survey to understand if researchers and practitioners
are (1) aware of the NI-factors and (2) if they correctly estimate
how much impact NI-factors have on DL experiments.

6.1 Survey design and deployment
We conduct an anonymous online survey over a period of two
weeks in February 2020. We target GitHub users who committed
code to popular public DL projects under the topics TensorFlow,
PyTorch, CNTK, Theano, deeplearning, and neural-network. We send
19,333 emails using Qualtrics services and receive 1,051 responses
(5.4% response rate), 901 of which are valid. Many of the email
addresses are from industry (364 from Microsoft, 833 from Google,
and 80 fromNVidia), and from academia (797 from U.S. universities).

We take the following steps to ensure our survey of 29 questions
is valid and not biased. First, we conduct three rounds of in-person
pilot studies with ten graduate students who have worked on DL
projects and use their feedback to remove ambiguity and biases in
our initial design. The pilot studies’ participants do not participate
in the actual survey.

Second, to ensure participant’s understanding, we define impor-
tant terms (e.g., deep learning, determinism, identical training runs,
and fixed-seed identical training runs) in the context of our survey
before the questions. For example, we give a clear definition of
a deterministic DL system before survey questions: “We define a
system as deterministic if the system has identical accuracy or similar
running time between multiple identical runs. In the case of a DL
system, identical training runs have the same training dataset, data
preprocessing method (e.g., same transformation operations), weight
initializer (i.e., drawn from the same random distribution), network
structure, loss function, optimizer, lower libraries, and hardware.”

All questions and definitions are included in the GitHub reposi-
tory whose link is provided in Section 1.

6.2 Survey results and findings
Participant Experience and Statistics: Of the 901 responses,
472 work in industry and 342 work in academia. Participants have
an average work experience of 6.3 years and a maximum of 47
years. The average DL experience is 3.0 years. Over 68.6% learn
AI formally (e.g., undergraduate and graduate school) and 32 are
involved with 5 or more AI projects.
Awareness ofNI-factors inDL systems: WeaskQuestion 20: “In
your opinion, are DL systems deterministic?” to gauge the awareness
that participants have of the NI-factors (results in Figure 6).

Many respondents are unaware (31.9%) or uncertain (21.8%) of
any variance of DL systems; and there is no correlation between
DL experience and awareness of DL variance (Finding 5).

0% 20% 40% 60% 80% 100%

Fixed-seed identical runs

Default identical runs
63.4%

31.9%

20.4%

21.8%

16.2%

46.4%
Yes Maybe No

Figure 6: Distribution of responses to Question 20 (Default
identical runs) and Question 26 (Fixed-seed identical runs)

0% 20% 40% 60% 80% 100%

Fixed-seed Per-Class

Fixed-seed Overall

Default Per-Class

Default Overall

63.4%

63.4%

31.9%

31.9%

12.7%

13.5%

9.3%

11.0%

9.7%

9.9%

15.4%

15.9%

7.2%

7.2%

21.1%

22.1%

No variance
(0%, 1%]

(1%, 2%]
(2%, 5%]

(5%, 10%]
(10%, 20%]

Over 20%
Others

Figure 7: Estimation of overall and per-class accuracy differ-
ence across default and fixed-seed identical training runs

To measure the correlation between different factors, we use
the Pearson correlation coefficient (r), a statistical indicator of lin-
ear correlation between two variables (|r |=0 means no correlation,
while |r |=1 suggests a strong correlation). There is no correlation
between awareness of DL variance and DL experience (r=0.03), DL
educational background (r=0.04), or job position (r=0.02). These
results suggest limited awareness of variance in DL systems regard-
less of experience and educational background.

Awareness of implementation-levelNI-factors inDL systems:
We design Questions 26: “Do you expect fixed-seed identical DL train-
ing runs to be deterministic?” to study how aware respondents are
with implementation-level NI-factors (results in Figure 6).

Most (83.8%, 755 out of 901) of our surveyed researchers and
practitioners are unaware of or unsure about implementation-
level NI-factors (Finding 6).

There is no correlation between awareness of implementation-
level NI-factors and DL experience (r=0.03), DL educational back-
ground (r=-0.01), or job position (r=0.06).

Estimate of accuracy difference: We ask participants who an-
swered “Yes” or “Maybe” to Question 20 to answer Question 21:
“From your experience, in the worst case, by how much would you
expect the final overall accuracy (e.g., in classification task) to vary in
terms of absolute value between identical training runs?”. Also, after
Question 26, we ask participants a similar Question 27 regarding
fixed-seed identical training runs. Those who answer “Maybe” (i.e.,
unsure about DL system variance), we still ask them to estimate
the magnitude of the variance. “Other” is an option to specify an
explanation if no estimate is given.

Figure 7 shows participants’ estimations of the overall and per-
class accuracy differences across default identical training runs
(Default Overall and Default Per-Class) and fixed-seed identical
training runs (Fixed-seed Overall and Fixed-seed Per-Class). No vari-
ance indicates participants that are unaware of the nondeterminism
of DL systems. Some participants choose “Others” and state that the
accuracy difference depends on the task and network architecture.

Researchers and practitioners underestimate the magnitude of
accuracy differences. Most (80.7%) responses estimate an accuracy
difference across default identical training runs to be less than 5%.

ASE ’20, September 21–25, 2020, Virtual Event, Australia H.V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, and Y. Yu, and N. Nagappan

Finding 2 indicates that the accuracy difference is up to 2.9%with
implementation-level NI-factors alone. However, only 10.4% of
respondents expect 2% or more accuracy difference across fixed-
seed identical training runs, and they estimate similarly for
per-class accuracy differences (Finding 7).

Estimate of training time difference:We ask participants to es-
timate how much the running time to convergence varies across
default and fixed-seed identical training runs to see if their esti-
mation matches the results from RQ3 (i.e., the convergence time
differences are up to 4,014.8% among default identical training runs
and up to 145.3% among fixed-seed identical training runs).

Most (77.7%) participants estimate the convergence time differ-
ences to be less than 10% across default identical training runs,
and the majority of (84.5%) respondents estimate a similar 10%
or less convergence time difference among fixed-seed identical
training runs (Finding 8).

7 DL-TRAINING PAPER SURVEY
We conduct a literature survey to study the awareness of and the
practice of handling DL variance in research papers.
Paper selection criteria and study approach: We extract re-
search articles from themost recent top SE (ICSE’19, FSE’19, ASE’19),
machine learning (NeurIPS/NIPS’19, ICLR’20, and ICML’19), com-
puter vision (CVPR’19 and ICCV’19), and systems (SOSP’19, AS-
PLOS’19, MLSys’19) conferences. We focus on articles that were
accepted for oral presentations (i.e., we exclude posters and spot-
light articles), to keep the amount of manual examination realistic,
considering that over 1,000 papers are accepted per year for confer-
ences such as NeurIPS/NIPS. In total, 1,152 articles meet the above
criterion. We split conferences into SE-systems-focused (SE and
systems) and AI-focused (machine learning and computer vision)
conferences to investigate whether AI papers are more likely to
consider this variance in their evaluation.

Two authors independently check each of the 454 randomly
sampled papers to see if it is relevant, i.e., papers that train DL
models (89.3% of agreement). With 95% confidence, 28 out of 202
papers from SE-systems conferences (13.9±3%), versus 197 out of
252 papers from AI conferences (78.1±4%) are relevant.
Paper survey results: We present the survey result as follows.

Of the 225 relevant papers, only 19.5±3% use multiple identical
training runs to evaluate their approaches (Finding 9): 25.0±4%
for SE-systems conferences and 18.7±3% for AI conferences.

These results corroborate our online survey findings, indicat-
ing that researchers rarely consider (or have no clear solutions to
measure) the impact of NI-factors. In addition, 33 papers in our
sample use the same models we evaluated and report an accuracy
improvement lower than the variance that we observed across mul-
tiple fixed-seed identical training runs (2.9%). Most (23) of these
studies do not report validation using multiple identical training
runs. Thus, the conclusions of these 23 studies are likely affected
by the variance in multiple identical training runs. This is a conser-
vative estimate as we use the implementation-level only variance
(2.9%) instead of the overall variance (10.8%) as the criterion.

8 IMPLICATIONS, SUGGESTIONS, AND
FUTUREWORK

Improving the stability of training implementations: Practi-
tioners may need to control NI-factors or replay DL training deter-
ministically to facilitate debugging, which are challenging tasks.
As discussed in Section 2.4, algorithmic NI-factors are generally
straightforward to control as they are introduced explicitly using
pseudo-random number generators which can be seeded before
each run. Practitioners may benefit from new methods (e.g., de-
terministic GPU [55]) to control implementation-level NI-factors,
which are much harder to control because they are often the byprod-
uct of optimization.

Research reproducibility and validity: Variance introduced by
NI-factors reduces the reproducibility of DL-related experiments.
Researchers should check if multiple identical training runs are
needed to ensure the validity of their experiments and comparison.

It is nontrivial to determine the number of identical runs needed,
which depends on the approaches and the baselines. One solution is
iteratively performing more replication runs when comparing to a
selected baseline. The replication process can stop when statistical
tests (e.g., U-test) confirm the significance (e.g., p-value < 0.05) of
the difference between the new approach and the baseline. If after
a large number of replication runs (e.g., more than 30 runs[15])
the improvement is not statistically significant, then the variance
might be large enough such that a statistically significant conclusion
about the difference between the two techniques might not be
possible. We are developing such a technique to help researchers
and practitioners with this process, to reduce the manual effort to
conduct valid experiments and replicate experiments.

Approaches to improve reproducibility suggested by the SE com-
munity [44, 75, 107] need to also consider training variance. New
approaches such as efficient checkpointing may be desirable.

Transparency is important in making sure that research is repro-
ducible and valid. Recently, the DL research community promoted
sharing artifacts and results transparently[12, 34]. Since DL sys-
tems are nondeterministic, it is important to share the data from the
replication runs as well. One solution is maintaining a centralized
trusted database that stores these replication runs and provides au-
thors of new approaches with baseline results that they can directly
compare to without rerunning the baseline approaches. We are
developing a tool that helps users to measure the variance of their
approaches and facilitates the comparison across approaches. Users
can upload their replication packages and results to a database, that
is provided by our tool, to be curated for comparison.

Producing better models: When a DL model is the contribution
(e.g., defect prediction [70] or program repair [69]), practitioners
could leverage variance to obtain a more accurate model.

Less expensive training and variance estimation: Since DL
training is expensive, an important research direction could be
less-expensive variance estimation and training approaches such
as software support for incremental training [47].

9 THREATS TO VALIDITY
External validity: Observed results might be different for other
networks. We use 6 very popular networks with diverse complexity

Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance ASE ’20, September 21–25, 2020, Virtual Event, Australia

(from 7,206 to 36,536,884 parameters) to mitigate this issue. We
encourage others (and ourselves) to replicate and enrich our stud-
ies with different DL networks, DL training approaches, and DL
libraries to build an empirical body of knowledge about variance in
DL systems. We are building a replication tool to help the research
community to share and replicate research experiments and results.

New algorithmic NI-factors can be added (e.g., new nondeter-
ministic layers) so our list of algorithmic NI-factors could become
incomplete in the future. For fixed-seed identical training runs,
we ensure that all algorithmic NI-factors of the DL networks we
evaluate are disabled.
Internal validity: Our implementation or the libraries we used
might have bugs. This should be alleviated by that (1) all our code is
reviewed by most authors, (2) our results show that variance exists
for all versions of all libraries we evaluate, thus unlikely that they
are caused by library bugs, (3) we focus on official releases of DL
libraries, so our runs should still be representative of real DL usage,
and (4) we analyze all results especially outliers to ensure there
were no implementation bugs.

Multiple identical training runs might produce different models
(i.e., models with different weights) with identical accuracy and
running time. Our study focuses on accuracy and time variance,
since these are the end results that users care about.
Construct validity:We ensure to target relevant participants in
our survey by specifically inviting code contributors to DL projects
and asking them to confirm that they work with DL. Respondents
might not have wanted to show any perceived ignorance which
could have biased their responses. However, the strength of the
responses, 83.8% being unaware or uncertain about implementation-
level nondeterminism in DL systems helps alleviate this issue.

10 RELATEDWORK
Our paper is unique because we study and quantify DL variance
caused by NI-factors and conduct surveys to check its awareness.
Variance study of reinforcement learning (RL): Closest to our
work is the study [80] that measures the impact of some implemen-
tation-level NI-factors on RL experiments. We study the general
DL variance, while they focus on RL variance only. In addition, we
measure the awareness by conducting a survey and a literature
review. Furthermore, while they focus on one network for one
task (i.e., playing the Atari game Breakout) and one version of one
core library (PyTorch), we study the impact of NI-factors using 6
networks trained on 3 datasets and multiple versions of three core
libraries. Papers [29, 53] that investigates the impact of random
seeds on RL are different from ours, since they only consider the
impact of random seeds (i.e., algorithmic NI-factors), while we also
study the variance caused by implementation-level NI-factors.
Awareness of the impact of nondeterminism: A recent litera-
ture survey [81] on 30 papers on the topic of text mining confirms
the results of our literature survey. None of the 30 investigated
papers report using different random seeds. Our literature survey
investigates DL training in general (not just text mining papers)
and examines 225 papers. Furthermore, our overall contribution is
different since we also quantify the differences in training accuracy

and time across identical training runs. Another paper [79] states
that small changes in the experimental setup can generate measure-
ment bias. It focuses on standard CPU computation benchmark [31]
and does not study the nonderterminism of DL systems.
Anecdotal evidence of NI-factors: Some studies [59, 76, 77, 108]
quantify the variance in their results caused by NI-factors. However,
these are only anecdotal evidence and none attempts to system-
atically study the variance introduced by algorithmic and imple-
mentation-level NI-factors. In addition, our surveys show that
awareness is still very low in the research community.
Nondeterminism in stochastic gradient descent (SGD):Much
work investigates variance caused by SGD [26, 33, 35, 58, 68]. While
these papers quantify nondeterminism caused by SGD, they ignore
all other sources of nondeterminism described in Section 2.
Impact of weight initialization: Prior work [57, 88, 101, 104]
measure the impact of different initial weights on models’ training
time.While such an issue is known, implementation-level NI-factors
have not been studied and our surveys show that they are often
not considered when evaluating DL systems.
Controlling implementation-level nondeterminism: Jooybar
et al. [55] propose a hardware mechanism to introduce determinism
in GPU-based algorithms. In our work, we do not focus on the
hardware itself and measure the variance caused by NI-factors
using popular GPUs without special hardware modifications.
DL System Benchmarking:Much work focuses on benchmark-
ing DL systems. However, their target is finding the best net-
works [30, 86, 121], hardware [92, 121], hyper-parameters [72], and
framework [48, 60, 72, 93, 95, 121]. Such approaches do not consider
the impact of NI-factors on multiple identical training runs.

11 CONCLUSIONS
This work studies the variance introduced by nondeterminism in
DL systems and the awareness of this variance among researchers
and practitioners. We perform experiments on three datasets with
six popular networks and find up to 10.8% accuracy differences
among identical training runs when excluding weak models. Even
with fixed seeds, the accuracy differences are as large as 2.9%. Our
surveys show that 83.8% of surveyed researchers and practitioners
are unaware of or unsure about implementation-level variance
and only 19.5±3% of papers in recent relevant top conferences use
multiple identical training runs to quantify the variance of their
DL approaches. Thus, we raise the awareness of DL variance, for
better research validity and reproducibility, more accurate models,
deterministic debugging, new research on training stability, efficient
training, and fast variance estimation.

ACKNOWLEDGMENTS
The authors thank Eric Horvitz, Ben Zorn, and Madan Musuvathi
for their insightful comments and discussions. They thank Yitong
Li for examining some research papers for the literature survey.
The research is partially supported by NSF 2006688 and a Facebook
research award. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily reflect
the views of the sponsors.

ASE ’20, September 21–25, 2020, Virtual Event, Australia H.V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, and Y. Yu, and N. Nagappan

REFERENCES
[1] 2019. ASE ’19: Proceedings of the 34th ACM/IEEE International Conference on

Automated Software Engineering.
[2] 2019. ASPLOS ’19: Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems.
[3] 2019. CVPR’19: Proceedings of The IEEE Conference on Computer Vision and

Pattern Recognition.
[4] 2019. ESEC/FSE ’19: Proceedings of the 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software
Engineering.

[5] 2019. ICCV’19: Proceedings of The IEEE International Conference on Computer
Vision. IEEE Press.

[6] 2019. ICML’19: Proceedings of The International Conference on Machine Learning.
[7] 2019. ICSE ’19: Proceedings of the 41st International Conference on Software

Engineering. IEEE Press.
[8] 2019. MLSys’19: Proceedings of Machine Learning and Systems.
[9] 2019. NIPS’19: Proceedings of the 33rd Conference on Neural Information Processing

Systems.
[10] 2019. SOSP ’19: Proceedings of the 27th ACM Symposium on Operating Systems

Principles.
[11] 2020. ICLR’20: Proceedings of The International Conference on Learning Represen-

tations.
[12] 2020. Reproducibility Challenge @ NeurIPS 2019. https://reproducibility-

challenge.github.io/neurips2019/
[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: a System for Large-Scale Machine Learning.. In OSDI.

[14] Charu C Aggarwal. 2018. Neural networks and deep learning. In Springer.
[15] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In ICSE.
[16] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan

Pascanu, Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian
Goodfellow, Arnaud Bergeron, et al. 2011. Theano: Deep learning on GPUs with
Python. In NIPS.

[17] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. In JMLR.

[18] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2019. AutoFocus: Interpreting
Attention-Based Neural Networks by Code Perturbation. In ASE.

[19] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:
Learning Affordance for Direct Perception in Autonomous Driving. In ICCV.

[20] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by Deep Learning. In ICSE.

[21] Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir
Filkov. 2020. Software Visualization and Deep Transfer Learning for Effective
Software Defect Prediction. In ICSE.

[22] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret
Zoph, Florian Schroff, Hartwig Adam, and Jon Shlens. 2018. Searching for
efficient multi-scale architectures for dense image prediction. In NIPS.

[23] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning.

[24] François Chollet. 2017. Xception: Deep learning with depthwise separable
convolutions. In CVPR.

[25] François Chollet et al. 2015. Keras. https://keras.io.
[26] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and

Yann LeCun. 2015. The loss surfaces of multilayer networks. In AISTATS.
[27] Anna Choromanska, Yann LeCun, and Gérard Ben Arous. 2015. Open Problem:

The landscape of the loss surfaces of multilayer networks. In COLR.
[28] J. Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences.
[29] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. 2018. HowMany Random

Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments.
In CoRR.

[30] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2017. Dawn-
bench: An end-to-end deep learning benchmark and competition. In Training.

[31] Standard Performance Evaluation Corporation. 2006. SPEC CPU2006 Bench-
marks. http://www.spec.org/cpu2006/.

[32] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng
Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot: a Practical Runtime
for Deterministic, Stable, and Reliable Threads. In SOSP.

[33] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. 2014. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In NIPS.

[34] Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A.
Smith. 2019. Show Your Work: Improved Reporting of Experimental Results. In
EMNLP-IJCNLP.

[35] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. 2018.
Essentially No Barriers in Neural Network Energy Landscape. In ICML.

[36] Simon S Du, Jason D Lee, Yuandong Tian, Barnabas Poczos, and Aarti Singh.
2017. Gradient descent learns one-hidden-layer cnn: Don’t be afraid of spurious
local minima. In arXiv preprint arXiv:1712.00779.

[37] Brian Everitt. 2002. The Cambridge dictionary of statistics.
[38] Hao-Shu Fang, Guansong Lu, Xiaolin Fang, Jianwen Xie, Yu-Wing Tai, and

Cewu Lu. 2018. Weakly and Semi Supervised Human Body Part Parsing via
Pose-Guided Knowledge Transfer. In CVPR.

[39] Xiang Gao, Ripon Saha, Mukul Prasad, and Abhik Roychoudhury. 2020. Fuzz
Testing based Data Augmentation to Improve Robustness of Deep Neural Net-
works. In ICSE.

[40] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. 2015. Escaping from saddle
points—online stochastic gradient for tensor decomposition. In COLT.

[41] Simos Gerasimou, Hasan Ferit-Eniser, Alper Sen, and Alper Çakan. 2020.
Importance-Driven Deep Learning System Testing. In ICSE.

[42] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS.

[43] David Goldberg. 1991. What Every Computer Scientist Should Know about
Floating-Point Arithmetic. ACM Comput. Surv. (1991).

[44] Jesús M González-Barahona and Gregorio Robles. 2012. On the reproducibil-
ity of empirical software engineering studies based on data retrieved from
development repositories. In ESE.

[45] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[46] Divya Gopinath, Hayes Converse, Corina S. Păsăreanu, and Ankur Taly. 2019.
Property Inference for Deep Neural Networks. In ASE.

[47] Hui Guan, Xipeng Shen, and Seung-Hwan Lim. 2019. Wootz: A Compiler-Based
Framework for Fast CNN Pruning via Composability. In PLDI.

[48] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2019. An empirical study towards characterizing
deep learning development and deployment across different frameworks and
platforms. In ASE.

[49] Jeff Haochen and Suvrit Sra. 2019. Random Shuffling Beats SGD after Finite
Epochs. In ICML.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In ICCV.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

[52] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.
2018. Deep Learning Type Inference. In ESEC/FSE.

[53] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep Reinforcement Learning that Matters. In AAAI.

[54] Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Annette Shoemaker.
2017. Efficient hyperparameter optimization for deep learning algorithms using
deterministic rbf surrogates. In AAAI.

[55] Hadi Jooybar, Wilson WL Fung, Mike O’Connor, Joseph Devietti, and Tor M
Aamodt. 2013. GPUDet: a deterministic GPU architecture. In ASPLOS.

[56] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System
Testing Using Surprise Adequacy. In ICSE.

[57] YK Kim and JB Ra. 1991. Weight value initialization for improving training
speed in the backpropagation network. In IJCNN.

[58] Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. 2018. An Alternative View: When
Does SGD Escape Local Minima?. In ICML.

[59] Yuriy Kochura, Sergii Stirenko, Oleg Alienin, Michail Novotarskiy, and Yuri
Gordienko. 2018. Performance Analysis of Open Source Machine Learning
Frameworks for Various Parameters in Single-Threaded and Multi-threaded
Modes. In CSIT.

[60] Vassili Kovalev, Alexander Kalinovsky, and Sergey Kovalev. 2016. Deep learning
with theano, torch, caffe, tensorflow, and deeplearning4j: Which one is the best
in speed and accuracy?

[61] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
[62] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. In NIPS.
[63] Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis,

Claire Le Goues, Graham Neubig, and Bogdan Vasilescu. 2019. DIRE: A Neural
Approach to Decompiled Identifier Naming. In ASE.

[64] Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis
Mitliagkas, Denis Kazakov, Yoshua Bengio, and Michael C. Mozer. 2019. State-
Reification Networks: Improving Generalization by Modeling the Distribution
of Hidden Representations. In ICML.

[65] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE.

[66] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. 2012.
Efficient backprop. In Neural networks: Tricks of the trade.

[67] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. 2016.
Gradient descent converges to minimizers. In arXiv preprint arXiv:1602.04915.

https://reproducibility-challenge.github.io/neurips2019/
https://reproducibility-challenge.github.io/neurips2019/
https://keras.io
http://www.spec.org/cpu2006/

Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance ASE ’20, September 21–25, 2020, Virtual Event, Australia

[68] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.
Visualizing the Loss Landscape of Neural Nets. In NIPS.

[69] Yi Li, Wang Shaohua, and Tien N. Nguyen. 2020. DLFix: Context-based Code
Transformation Learning for Automated Program Repair. In ICSE.

[70] Yi Li, ShaohuaWang, Tien NNguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. In PACMPL.

[71] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lü.
2019. Boosting Operational DNN Testing Efficiency through Conditioning.
In ESEC/FSE.

[72] Ling Liu, Yanzhao Wu, Wenqi Wei, Wenqi Cao, Semih Sahin, and Qi Zhang.
2018. Benchmarking deep learning frameworks: Design considerations, metrics
and beyond. In ICDCS.

[73] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018.
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems. In
ASE.

[74] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: Automated Neural Network Model Debugging via State Differen-
tial Analysis and Input Selection. In ESEC/FSE.

[75] Zaheed Mahmood, David Bowes, Tracy Hall, Peter CR Lane, and Jean Petrić.
2018. Reproducibility and replicability of software defect prediction studies. ISE
(2018).

[76] Andrii Maksai and Pascal Fua. 2019. Eliminating exposure bias and metric
mismatch in multiple object tracking. In CVPR.

[77] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C Daniel Freeman, and
Jascha Sohl-Dickstein. 2019. Understanding and correcting pathologies in the
training of learned optimizers. In ICML.

[78] Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, and Maria D. van der Walt. 2017.
A Deep Learning Approach to Diabetic Blood Glucose Prediction. In Front. Appl.
Math. Stat.

[79] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter Sweeney. 2009.
Producing wrong data without doing anything obviously wrong!. In ACM
SIGARCH Computer Architecture News.

[80] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. 2019. Deterministic
Implementations for Reproducibility in Deep Reinforcement Learning. In AAAI
Workshop on Reproducible AI.

[81] Babatunde K Olorisade, Pearl Brereton, and Peter Andras. 2017. Reproducibility
in machine Learning-Based studies: An example of text mining. In Reproducibil-
ity in Machine Learning Workshop, ICML.

[82] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NIPS.

[83] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: Differential
Verification of Deep Neural Networks. In ICSE.

[84] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore:
Automated Whitebox Testing of Deep Learning Systems. In Commun. ACM.

[85] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRA-
DLE: Cross-Backend Validation to Detect and Localize Bugs in Deep Learning
Libraries. In ICSE.

[86] Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and Yan Liu. 2018.
Benchmarking deep learning models on large healthcare datasets. In J. Biomed.
Inform.

[87] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug
Synthesis: Challenging Bug-Finding Tools with Deep Faults. In ESEC/FSE.

[88] Tim Salimans and Durk P Kingma. 2016. Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. In NIPS.

[89] Shlomo Sawilowsky, Jack Sawilowsky, and Robert J. Grissom. 2011. Effect Size.
[90] Andrew M. Saxe, James L. Mcclelland, and Surya Ganguli. 2014. Exact solutions

to the nonlinear dynamics of learning in deep linear neural network. In ICLR.
[91] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s Open-Source Deep-

Learning Toolkit. In KDD.
[92] Shayan Shams, Richard Platania, Kisung Lee, and Seung-Jong Park. 2017. Evalu-

ation of deep learning frameworks over different HPC architectures. In ICDCS.
[93] Ali Shatnawi, Ghadeer Al-Bdour, Raffi Al-Qurran, and Mahmoud Al-Ayyoub.

2018. A comparative study of open source deep learning frameworks. In ICICS.
[94] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and

Xiangyang Xue. 2017. Dsod: Learning deeply supervised object detectors from
scratch. In ICCV.

[95] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking
state-of-the-art deep learning software tools. In CCBD.

[96] Connor Shorten and Taghi M. Khoshgoftaar. 2019. A survey on Image Data
Augmentation for Deep Learning. In Journal of Big Data.

[97] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. In arXiv preprint arXiv:1409.1556.

[98] Xinhang Song, Luis Herranz, and Shuqiang Jiang. 2017. Depth cnns for rgb-d
scene recognition: Learning from scratch better than transferring from rgb-cnns.
In AAAI.

[99] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. In JMLR.

[100] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In
ASE.

[101] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In ICML.

[102] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
CVPR.

[103] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B
Kendall, Michael B Gotway, and Jianming Liang. 2016. Convolutional neural
networks for medical image analysis: Full training or fine tuning?. In IEEE Trans.
Med. Imag.

[104] Kok Keong Teo, Lipo Wang, and Zhiping Lin. 2001. Wavelet packet multi-layer
perceptron for chaotic time series prediction: effects of weight initialization. In
ICCS.

[105] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated Testing of Deep-Neural-Network-Driven Autonomous Cars. In ICSE.

[106] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray.
2020. Testing DNN Image Classifier for Confusion & Bias Errors. In ICSE.

[107] Fabian Trautsch, Steffen Herbold, Philip Makedonski, and Jens Grabowski. 2018.
Addressing problems with replicability and validity of repository mining studies
through a smart data platform. In ESE.

[108] Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James
Hays. 2019. Composing text and image for image retrieval-an empirical odyssey.
In CVPR.

[109] Huiyan Wang, Jingweiu Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. DIS-
SECTOR: Input Validation for Deep Learning Applications by Crossing-layer
Dissection. In ICSE.

[110] Jingyi Wang, Guoliang Dong, Jun Sun, XinyuWang, and Peixin Zhang. 2019. Ad-
versarial Sample Detection for Deep Neural Network through Model Mutation
Testing. In ICSE.

[111] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and
Robert M Patton. 2015. Optimizing deep learning hyper-parameters through an
evolutionary algorithm. In MLHPC.

[112] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In
BMVC.

[113] Hao Zhang and W. K. Chan. 2019. Apricot: A Weight-Adaptation Approach to
Fixing Deep Learning Models. In ASE.

[114] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based Neural Source Code Summarization. In ICSE.

[115] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input Validation
Framework for Autonomous Driving Systems. In ASE.

[116] Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun
Zhao, and Meng Sun. 2020. Towards Characterizing Adversarial Defects of Deep
Learning Software from the Lens of Uncertainty. In ICSE.

[117] Gang Zhao and Jeff Huang. 2018. DeepSim: Deep Learning Code Functional
Similarity. In ESEC/FSE.

[118] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
2017. Pyramid scene parsing network. In CVPR.

[119] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu,
Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic Online
Combat Game Testing Using Evolutionary Deep Reinforcement Learning. In
ASE.

[120] Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Lingming
Zhang, Bei Yu, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World
Testing of Autonomous Driving Systems. In ICSE.

[121] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee, B.
Schroeder, and G. Pekhimenko. 2018. Benchmarking and Analyzing Deep
Neural Network Training. In IISWC.

[122] Rui Zhu, Shifeng Zhang, Xiaobo Wang, Longyin Wen, Hailin Shi, Liefeng Bo,
and Tao Mei. 2019. ScratchDet: Training single-shot object detectors from
scratch. In CVPR.

